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Appendices

A Spatial, temporal and spatial-temporal-weighted models
The two simulation models in the main text describe how population size, N(x, t), at location x
changes over time (t). We assume that the temperature, K(x, t), at each location can vary in time

and space. To forecast the dynamics generated by these simulations models, we fit a series of

statistical models.

The spatial model, which we refer to as S, is a quadratic regression of the mean long-term

population density at a location (N̄(x)) against the mean temperature at that location (K̄(x)).
The quadratic term describes the unimodal relationship between N̄ and K̄. The spatial statistical

model is

N̄(x) = S(K̄(x)) = βS
0 + βS

1K̄(x) + βS
2K̄(x)2

+ ε (1)

The temporal model, which we call T, starts with a time-series of “observed” population

sizes, or total biomasses, at one location, N(t), for t = 1...n (the spatial index is suppressed

because we only focus on one location at a time). In the community turnover example, we fit the

following regression, which predicts biomass at time t + 1 as a function of biomass (N(t)) and

annual temperature (K(t)) at time t,

ln(N(t + 1)) = T(N(t), K(t)) = βT
0 + βT

1 ln(N(t)) + βT
2 K(t) + ε (2)
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In the eco-evolutionary example, the response variable is the log of the population growth rate.

The regression, which includes a quadratic effect of temperature, is

ln
(

N(t + 1)
N(t)

)
= T(N(t), K(t)) = βT

0 + βT
1 ln(N(t)) + βT

2 K(t) + βT
3 K(t)2 + ε (3)

This version of the temporal model returns a per capita growth rate on the log scale. To predict

population size at the next time step, we exponentiate the growth rate and multiply it by the

current population size: exp(T(N(t), K(t)))N(t).
The weighted model is a weighted average of predictions from the spatial and temporal

models, with the weights changing as a function of time, here expressed as the forecast horizon.

The weights change as a function of the square root of the forecast horizon, to allow rapid shifts

in the model weights.

logit(ωt) = βW
0 + βW

1

√
t (4)

For the community turnover example, the predicted biomass from the weighted model is:

N̂(t + 1) = ω · T(N(t), K(t)) + (1−ω) · S(K(t)) (5)

Again, we suppress the spatial subscript (x) here because we are focused on densities at just

one location. For the eco-evolutionary example, the predicted population size from the weighted

model is:

N̂(t + 1) = ω · exp(T(N(t), K(t)))N(t) + (1−ω) · S(K(t)) (6)

We used the optim function to estimate the βWs that minimize the sum of squared errors,

(N̂(t + 1)− N(t + 1))2.

In the main text, we show the point forecasts but not the uncertainty around the forecasts.

After exploring that uncertainty, we decided that presenting it would be misleading. For the spa-

tial and, especially, the temporal statistical models, the uncertainty is unrealistically low, because

the models are estimated with very large samples sizes from the simulations. Furthermore, the

simulations do not include noise; the only reason there is any uncertainty is because the statis-

tical models are slightly mis-specified with respect to the process models. Showing uncertainty

for the weighted model would be even less meaningful, because it is not a true, out-of-sample

forecast (parameters are fit directly to the observations for which we make predictions). The R

code to compute uncertainties for the spatial and temporal forecasts is available on our Github

repository (https://github.com/pbadler/space-time-forecast), but is commented out.

B Description of the meta-community model
Alexander et al. (2018) developed a meta-community model to represent dynamics of local com-

munities arrayed along a one-dimensional elevation gradient, as influenced by three main pro-
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cesses: temperature-dependent growth, competition, and dispersal. Here we adapt their notation

to be consistent with our own.

The population size of species i in cell x at time t + 1, Ni(x, t + 1), is computed in two

steps. The first step accounts for changes in local population sizes due to dispersal. In each

local community, all species export a fraction (d) of their local population to the two adjacent

communities in the 1-dimensional landscape:

N′i (x, t) = (1− d) · Ni(x, t) +
d
2
· (Ni(x + 1, t) + Ni(x− 1, t)) (7)

Here N′ distinguishes the post-dispersal population size from the pre-dispersal population size.

The second step computes population growth, taking into account competition:

Ni(x, t + 1) = N′i (x, t) + N′i (x, t)[gi(K(x)− Kmini)− ciN′i (x, t)− li ∑
k

N′k(x, t)] (8)

In the absence of competition, the growth rate (gi) is determined by the difference between the

temperature at site x (K(x)) and the focal species’ minimum temperature tolerance, Kmini, the

lowest temperature at which a species can maintain a positive growth rate. Growth is further

reduced by intraspecific and interspecific competition, parameterized by ci and li. All species are

assigned the same value of ci, which represents an additional effect of intraspecific competition

on top of interspecific competition. This stabilizes coexistence, since every species will exert

stronger intra- than interspecific competition. However, values of l vary among species to create

a trade-off between growth rates and competitive ability versus low temperature tolerance: fast-

growing species (high gi) are more tolerant of interspecific competition (low li) but are more

limited by temperature (high Kmini).

To assign species-specific parameter values, the number of species in the metacommunity is

specified. Next, each species is assigned an optimal temperature within a specified temperature

range by drawing from a uniform distribution. Sensitivity to interspecific competition is then

determined as a decreasing function of optimal temperature. Calculations are performed in the

script SpeciesPoolGen.R.

C Description of the eco-evolutionary annual plant model
Haploid Model: Begin with a haploid model that describes the number of seeds present in

a population. We model a scenario in which all seeds germinate, so we can ignore seedbank

dynamics. Ni,t is the number of seeds of species i at time t. The model is

N1,t+1 =
λ1(K(t))N1,t

1 + α11N1,t + α12N2,t

N2,t+1 =
λ2(K(t))N2,t

1 + α21N1,t + α22N2,t

(9)
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where λi(K(t)) is the seed production rate per plant, and K(t) is the temperature at time t. Below

we refer to the αij as intra- and inter-genotype competition coefficients.

Diploid Model: Consider a one-species diploid model. The genotypes are denoted by AA,

Aa, and aa. The number of each genotype at time t is NAA(t), NAa(t), and Naa(t). The seed

production rate for genotype AA is λAA(K(t)), and the analogous parameters for the other

genotypes are similarly denoted. The competition coefficients are denoted by αi,j, e.g., αAA,AA or

αAA,Aa. Throughout we assume that gametes mix randomly in the population.

First consider the case where the competition coefficients are zero (αi,j = 0). Let T denote the

total number of gamete-pairs produced in a given year,

T = λAA(K(t))NAA(t) + λAa(K(t))NAa(t) + λaa(K(t))Naa(t). (10)

The first term is the number of gamete-pairs produced by AA individuals. The second and third

terms are the numbers of gamete-pairs produced by Aa and aa individuals, respectively. The

proportion of A gametes (φA) and the proportion of a gametes (φa) are given by

φA =
2λAA(K(t))NAA(t) + λAa(K(t))NAa(t)

2T
and φa = 1− φA. (11)

Note that the T in the denominator of φA shows up because we are computing proportions.

Combining all of these we get the dynamics for each genotype,

NAA(t + 1) = φ2
AT

NAa(t + 1) = φAφaT

Naa(t + 1) = φ2
a T

(12)

Now consider the case where the competition coefficients are non-zero (αi,j 6= 0). Including

competition changes the way in which we compute T, φA, and φa. Specifically, because the total

number of seeds produced per year by each genotypes is reduced based on intra- and inter-

genotype competition, the total number of gamete-pairs becomes

T =
λAA(K(t))NAA(t)

1 + αAA,AANAA(t) + αAA,AaNAa(t) + αAA,aaNaa(t)

+
λAa(K(t))NAa(t)

1 + αAa,AANAA(t) + αAa,AaNAa(t) + αAa,aaNaa(t)

+
λaa(K(t))Naa(t)

1 + αaa,AANAA(t) + αaa,AaNAa(t) + αaa,aaNaa(t)
.

(13)

The first line is the number of gamete-pairs produced by AA individuals after accounting for the

effects of competition. The second and third lines are the numbers of gamete-pairs produced by
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Aa and aa individuals, respectively. The proportions of A gametes and a gametes are

φA =
2

2T
λAA(K(t))NAA(t)

1 + αAA,AANAA(t) + αAA,AaNAa(t) + αAA,aaNaa(t)

+
1

2T
λAa(K(t))NAa(t)

1 + αAa,AANAA(t) + αAa,AaNAa(t) + αAa,aaNaa(t)

φa = 1− φA

(14)

Combining all of this results in the same model as above,

NAA(t + 1) = φ2
AT

NAa(t + 1) = 2φAφaT

Naa(t + 1) = φ2
a T,

(15)

but the definitions of T, φA, and φa are given by equations (13) and (14) .

Literature cited
Alexander, J. M. et al. 2018. Lags in the response of mountain plant communities to climate

change. – Global Change Biology 24: 563–579.
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Supplementary Tables

Table SM-1: Parameters and parameter values for the community turnover case study. Values
are assigned at the start of comm turn master.R. “Name” refers to the variable declared in the
computer code. These names do not exactly match the symbols shown in the equations in
Appendix B; rather, the species-specific values of those parameters are calculated in the computer
code based on the values in this table.

Name Value Definition
L land 20 Length of landscape
Tmin 0 Minimum of spatial gradient in baseline temperature
Tmax 15 Maximum of spatial gradient in baseline temperature
Tstdev 2 Standard deviation of temperature (interannual variation)
deltaT 4 Magnitude of directional change in temperature
burnin yrs 2000 Number of years to initialize simulation
baseline yrs 1000 Number of years at baseline temperature used to fit statistical models
warming yrs 200 Number of years over which temperature increases
final yrs 2000 Number of years at steady-state, elevated temperature
N 40 Number of species
Gmax 0.5 Maximum population growth rate
Gmin 0.2 Minimum population growth rate
Lmax 1.5 Maximum sensitivity to competition
Lmin 0.7 Minimum sensitivity to competition
Cmax 0.2 Maximum additional sensitivity to conspecific competition
Cmin 0.2 Minimum additional sensitivity to conspecific competition
d 0.01 Fraction of offspring dispersing from home site

Table SM-2: Parameters and parameter values for the eco-evolutionary case study. Values are as-
signed at at the start of genetic diversity master.R. “Name” refers to the variable declared in
the computer code. Where appropriate, the corresponding symbols from equations in Appendix
C are shown in parentheses.

Name Values Definition
Tstdev 1 Standard deviation of temperature (interannual variation)
baseT -1 Baseline temperature
deltaT 5 Total change in temperature
baseline yrs 500 Number of years at baseline temperature used to fit statistical models
warming yrs 100 Number of years over which temperature increases
final yrs 300 Number of years at steady-state, elevated temperature
fec Tmu -1,0,1 Optimal fecundity temperature for genotypes AA, Aa, and aa
fec Tsigma 8 Standard deviation in fecundity for all genotypes
fec max 100 Maximum fecundity for all genotypes
alpha (α) 1 All competition coefficients for all genotypes
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Supplementary Figures

Figure SM-1: (A) Temporal shifts in the model weighting term for 10 independent simulations
of (A) the community turnover model, and (B) the eco-evolutionary model. For the community
turnover model, each simulation began with initialization of a new regional species pool. For the
eco-evolutionary model, genotype parameters were fixed, and only the sequence of annual tem-
peratures varied between runs. In all cases, the combined forecast is heavily weighted towards
the time-series model at short forecast time scales, and towards the space-for-time model at long
forecast time scales.
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Figure SM-2: (A) Simulated annual temperatures (grey) and expected temperature (black), which
was used to make forecasts, at the focal site. In contrast to Fig. ??, which shows results for a
period of warming followed by stationary temperatures, for this simulation we spread the same
temperature increase out over the entire simulation with no stationary periods. (B) Simulated
focal species biomass and forecasts from the spatial, temporal and weighted statistical models at
the focal site in the metacommunity model. (C) Simulated biomass of the focal species (black) and
all other species (grey), and the weight given to the temporal statistical model for focal species
biomass (blue). Time 1000 (years) in each panel corresponds to the start of the temperature
increase. 8



Figure SM-3: Results for total biomass from the community turnover model. Blue points show
mean total biomass during the baseline period at locations across the temperature gradient, and
the blue line shows predictions from the spatial model. Red points show annual total biomass
during the baseline period as a function of annual temperature at the central site on the gradient.
The red line shows predictions from the temporal model.
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Figure SM-4: Results for total biomass from the community turnover model. (A) Simulated an-
nual temperatures (grey) and expected temperature (black), which was used to make forecasts, at
the focal site. (B) Simulated total biomass and forecasts from the spatial, temporal and weighted
models. (C) Simulated changes in biomass of all species (grey) at the focal site in the metacom-
munity model, and the weight given to the temporal model for total biomass (blue). Time 1000
(years) in this figure corresponds to the start of the temperature increase.
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Figure SM-5: Simulated shifts in genotype abundances, and the model weighting term, ω, during
the warming phase and the following stationary temperature phase. Time 0 (years) in this figure
corresponds to the start of the temperature increase.
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