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Appendix 1 Land use covariates 

Table A1. Description of the land use covariates used in the study. The class column indicates the identifier 

used in the National Land Survey of Finland’s Topographic Database. Multiple classes for a variable imply 

that we have simplified the original classification. 

Variable Classes Description Notes 
Agriculture 32611 Agricultural fields.  
Built area 40200 Densely built-up areas. Defined as areas of at least 50000 m2 by 

merging 25m buffers around buildings 
and aligning to the cadastral system. 

Horticulture 32612 Orchards and gardens.  
Lake 36200 Lakes.  
Marsh 35300, 35411, 

35412, 35421, 
35422 

Open and forested bogs and 
paludified land. 

 

Meadow 32800 Unmanaged open grasslands.  Includes abandoned agricultural fields. 
Paved road 12111, 12112, 

12121, 12122, 
12131, 12132 

Road classes I – III. Linear element, we buffered the 
features by half of the average class 
width to create a land use polygon. 

Rock 34100, 
34700 

Open rock and rocky areas.  

Sand 34300 Open areas covered by sand or 
gravel. 

 

Sports 33100 Sports and other recreational 
areas. 

 

Stream 36111, 36112 Small streams up to 5m wide. Linear element, we buffered the 
features by half of the average class 
width to create a land use polygon. 

Unpaved road 12316, 12314, 
12313, 12312, 
12141, 12141 

Unpaved roads, trails and paths Linear element, we buffered the 
features by half of the average class 
width to create a land use polygon. 

 

  



Appendix 2 Connectivity 

We define patch connectivity 𝑆",$, an approximation of the expected number of immigrants to patch 𝑖 in 

year 𝑡, as 
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where 𝐴"+  is the scaled area (in hectares) of the target patch 𝑖 and 𝑁6,$17 is the number of observed winter 

nests in the source patch in the fall of the previous year. The exponent 𝑥 accounts for effects of patch size 

on immigration probability (Hanski et al. 2000). The dispersal probability is given by the two-dimensional 

exponential dispersal location kernel :
-

-	;𝑒
1,23,4  (Clark et al. 1999) where 𝛼 describes the scale of dispersal 

and 𝑑",6 the centroid-to-centroid distance (in km) between patches 𝑖 and 𝑗. 

The parameter values we used in our analysis were 2.0 for 𝛼 and 0.44 for 𝑥. These values correspond to 

estimates from a stochastic patch occupancy model by Hanski et al. (2017) who used an unnormalized form 

of the dispersal kernel. The value chosen for 𝛼 corresponds to a mean dispersal distance of one kilometer 

(Nathan et al. 2012). In addition to the modelling study by Hanski et al. (2017) this value agrees with mark-

recapture data, observed colonization events, and landscape genetic studies (Hanski et al. 1994, van 

Nouhuys and Hanski 2002, Fountain et al. 2018). 

  



Appendix 3 Habitat quality covariates 

From the grazing intensity data, we derived an additional binary indicator for the presence of grazing. We 

combined the vegetation data for the two species by choosing the higher abundance as our measure of 

host plant abundance. We were interested in host plant availability and the abundances were measured on 

an approximately multiplicative ordinal scale (0 – 3) so that their sum would not be a meaningful quantity. 

Correspondingly, we chose the proportion of desiccated plants that was measured for the more abundant 

plant, or the mean proportion, if both plants were equally abundant. These simplifications ignore the slight 

differences in larval growth rates and adult preferences between the two host plants, but they are not of 

specific interest in this study as Veronica spicata occurs only in some parts of the study region (Kuussaari et 

al. 2000, van Nouhuys et al. 2003, Ojanen et al. 2013).  



Appendix 4 Landscape composition metrics 

We considered land use within a buffer of 1000 meters from each patch. We divided the buffer into rings 

25 meters wide and each of these rings had its own weight as a function of the area and distance from the 

habitat. We calculated the weighted proportion of a land cover class following (Miguet et al. 2017) as 

𝑥C," = 	)𝑤",6
6
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where 𝑥C,",6 	is the proportion of land use class 𝑙 in patch 𝑖 in the 𝑗th ring. The weight 𝑤",6  is a function of the 

area 𝐴6  and distance from the centroid of patch of the 𝑗th strip, and the distance decay follows an 

unnormalized exponential distribution: 

𝑤",6 = 	
𝑒1,24𝐴6
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The parameter 𝛼 scales the weight as a function of distance from patch 𝑖. We used the value of 3 per 

kilometre. This means that the cumulative weight reaches 95 percent after 900 meters distance. The 

denominator is a sum over all buffer rings 𝑐 around patch 𝑖 and ensures that the weights 𝑤"  sum to one. 

We ignore land use within 100 meters of the patch centroid as the minimum bounding circle of 93 % of the 

patches has a radius of 100 m or less and would thus overlap with the patch and patch edge land use for 

most patches. For some of the larger patches there is still some overlap, but as the patches are not circular, 

their footprint is still mostly smaller than that of the circle enclosing them.  



Appendix 5 Model implementation 

Spatio-temporal covariance structure 

We defined the spatio-temporal latent fields 𝑧K(𝑠, 𝑡) and 𝑧O(𝑠, 𝑡) as Gaussian processes with a separable 

covariance function CQ𝑧(𝑠, 𝑡), 𝑧(𝑠R, 𝑡R)S = 𝐶U(𝑠, 𝑠R)𝐶$(𝑡, 𝑡R) (Cressie and Wikle 2011, pp. 309–313, Banerjee 

et al. 2014, pp. 263–264). We used the Matérn function for the spatial covariance CU(𝑠, 𝑠R) =
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b, where	𝜌 is the length scale, and an exponential function (AR(1) 

model) for the temporal covariance C$(𝑡, 𝑡′) = 𝛾1_$1$`_ where 𝛾 is the correlation between two consecutive 

years. The Gaussian random field induced by the Matérn covariance function can be viewed as a solution to 

a stochastic partial differential equation (SPDE), which allows us to use a computationally efficient 

approximation as a Gaussian Markov random field as implemented in INLA (Lindgren et al. 2011). We 

parametrized the Matérn SPDE solution with the default value of 𝛼 = 2, which corresponds to 𝜈 = 1 in the 

Matérn covariance function defined in two-dimensional Euclidean space (Lindgren and Rue 2015). 

Spatial domain triangulation 

We constructed the mesh for the SPDE approximation from the habitat patch centroid coordinates such 

that the cut-off for joining nearby patches was 0.5 km (Fig. A1). The boundary of the inner domain was set 

to 10 km from the closest patches; the outer domain was set to extend for 20 km. The longest permissible 

edge length inside the inner domain was 10 km and 20 km in the outer domain. The minimum angle for the 

triangles was set to 23 degrees. 

 







Appendix 10 Spatio-temporal random effect of the abundance model over time 

 

Figure A4. Three-year time window means of the spatio-temporal random field for abundance. We 

standardized the spatial-temporal random fields to unit variance before calculating the means. Coastline 

data from the National Land Survey of Finland's (NLS) Topographic database (acquired 08/2017).  
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