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APPENDIX 1: Description of the procedure to predict the change in community 

habitat preference index between 2000 and 2050 under each global change 

scenario. 

 

A habitat preference index (succesfully applied to monitor changes in the bird 

community specialization in Catalonia, see Clavero and Brotons, 2010) was calculated 

for each of the 79 species (hereafter SHPI) on the basis of their frequency of occurrence 

variation along the landscape gradient from open habitats (i.e. early-successional stages 

and sparsely vegetated areas) to forest areas (hereafter open-forest gradient). Not all 

species will be equally affected by climate and fire changes. For instance, raptor species 

can be only indirectly affected by fires by changing e.g. areas that can be used for 

hunting. This index was then averaged to analyse the patterns of variation of 

communities’ habitat preference (hereafter CHPI) values under our global change 

scenarios. 

 

Following the same procedure that for CTI, CHPI values were computed as the average 

of SHPI values weighted by species’ occurrence probability (P) as follow:  

 

𝐶𝐻𝑃𝐼 =
 (𝑆𝐻𝑃𝐼1 ∗ 𝑃1)  + … + (𝑆𝐻𝑃𝐼𝑛 ∗ 𝑃𝑛)

(𝑃1 +  … +  𝑃𝑛)
 

 

The CHPI value for each grid cell was calculated for the current (year 2000) and future 

(year 2050) conditions under the different global change scenarios. The change in CHPI 

(hereafter ΔCHPI) was calculated for each cell as the difference between future 

(CHPI2050) and present (CHPI2000) values.  

 

According to our simulations, the variability of CHPI between 2000 and 2050 was 

found to be strongly affected by climate change, fire-vegetation dynamics and biotic 

interactions (Fig. A1.1). An overall increase of CHPI values was predicted under all 

scenarios due to a higher proportion of forest-dwelling species or a decrease of open-

habitat-dwelling species in the bird community, especially at altitudes above 1,000 

meters. This increase in the CHPI was predicted to be higher under fire management 

policies characterized by increasing levels of fire suppression than under scenarios 

wherein larger burnt area are expected (compare e.g. ‘stop all fires’ scenarios with 

scenarios without fire suppression or based on ‘let-burn’ policies).  

 

Scenarios wherein climate change was included tended to produce smaller increases in 

the CHPI values than those scenarios where climate change is not explicitly considered, 

mainly in mountain areas (above 1,000 m). This suggests that climate warming will 

likely increase the proportion of open-habitat species or decrease the proportion of 

forest-dwelling species in the community. No general differences in ΔCHPI between 

climate change scenarios A2 and B2 were found, but the overall increase in the CHPI 

was higher under the B2 than A2 in areas located above 1,000 m (Fig. A1.1).  

 

The inclusion of a macroecological constraint and biotic interactions had also an 

important effect in driving the variability of CHPI across the scenarios, leading to larger 

increases in the CHPI (compare scenarios labelled ‘SESAM’ and ‘S-SDM’ in Fig. 

A1.1). 

 

  



 
Figure A1.1. Boxplots representing the change in community habitat preference index (ΔCHPI) 

between 2000 and 2050 under each global change scenario, averaged for the whole study area, and 

for areas below and above 1,000 meters. These changes were predicted by stacking rough outputs 

from single-species distribution models (labelled ‘S-SDM’) and by implementing the spatially 

explicit species assemblage modelling (‘SESAM’) framework. Scenarios wherein climate change is 

included as driver of species’ distribution under the description of the Intergovernmental Panel on 

Climate Change (IPCC) are presented by red-outline boxes (labelled ‘CC’) in white (labelled ‘A2’) 

and grey (‘B2’). Scenarios wherein climate change is not included but accounts for an indirect effect 

of climate change on future fire regime are represented in white (A2) and grey (B2) with blue-

outline boxes (labelled ‘noCC’). Axis X lists the fire regime scenarios simulating future land cover 

changes driven by fire-vegetation dynamics in the study area. Each scenario is a combination of a 

climate scenario (A2 and B2) and a fire management policy. A gradient in total burnt area is showed 

from the business-as-usual scenarios, characterized by high levels of fire suppression (‘Stop all fires’ 

scenarios), to scenarios characterized by alternative ‘let-burn’ strategies aimed to reduce the impacts 

of large fire (‘let-burn’ plus). See Regos et al., (2016, 2015) for a complete description of the 

scenarios. For all boxplots, lower and upper whiskers encompass the 95% interval, lower and upper 

hinges indicate the first and third quartiles, and the central black line indicates the median value. 
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APPENDIX 2: Evaluation of predictive performance for each target species and 

modelling approach. 

 

 

Table A2.1. AUC values for single-species ensemble models: 1) built with climate 

variables at the European level (EU-Climate), 2) downscaled projections at the Catalan 

level (CAT-Climate models), 3) built with land cover variables (‘CAT-Habitat’), and 4) 

built with climate and land cover variables according to a multi-scale hierarchical 

integration approach (CAT-Combined models; see details in Regos et al.. 2016).  

 

Species ACRON 

EU-

Climate 

CAT-

Climate  

CAT-

Habitat  

CAT-

Combined  

Accipiter gentilis ACGEN 0.956 0.59 0.79 0.874 

Accipiter nisus ACNIS 0.957 0.62 0.742 0.801 

Aegithalos caudatus AECAU 0.976 0.61 0.855 0.914 

Alectoris rufa ALRUF 0.993 0.6 0.822 0.899 

Anthus campestris ANCAM 0.957 0.76 0.912 0.957 

Anthus trivialis ANTRI 0.971 0.51 0.848 0.972 

Apus melba APMEL 0.974 0.64 0.711 0.741 

Aquila chrysaetos AQCHR 0.962 0.5 0.863 0.952 

Bubo bubo BUBUB 0.951 0.56 0.838 0.891 

Buteo buteo BUBUT 0.976 0.5 0.701 0.712 

Caprimulgus europaeus CAEUR 0.957 0.6 0.701 0.727 

Carduelis cannabina CAINA 0.982 0.63 0.81 0.882 

Carduelis carduelis CACAR 0.989 0.73 0.818 0.865 

Certhia brachydactyla CEBRA 0.984 0.6 0.835 0.908 

Circaetus gallicus CIGAL 0.959 0.64 0.676 0.708 

Columba oenas COOEN 0.961 0.63 0.786 0.903 

Columba palumbus COPAL 0.972 0.54 0.822 0.903 

Corvus corax CORAX 0.966 0.59 0.696 0.726 

Delichon urbica DEURB 0.975 0.56 0.691 0.706 

Dendrocopos major DEMAJ 0.968 0.59 0.886 0.946 

Dryocopus martius DRMAR 0.974 0.71 0.913 0.98 

Emberiza cia EMCIA 0.976 0.58 0.87 0.927 

Emberiza cirlus EMCIR 0.991 0.54 0.847 0.905 

Emberiza hortulana EMHOR 0.958 0.51 0.926 0.969 

Erithacus rubecula ERRUB 0.978 0.74 0.929 0.96 

Falco peregrinus FAPER 0.953 0.51 0.818 0.859 

Fringilla coelebs FRCOE 0.982 0.78 0.911 0.968 

Galerida theklae GATHE 0.995 0.51 0.919 0.958 

Garrulus glandarius GAGLA 0.97 0.6 0.87 0.923 

Gypaetus barbatus GYBAR 0.997 0.68 0.926 0.984 

Gyps fulvus GYFUL 0.981 0.52 0.868 0.941 

Hieraaetus fasciatus HIFAS 0.989 0.64 0.98 0.997 

Hieraaetus pennatus HIPEN 0.959 0.65 0.901 0.971 

Hirundo daurica HIDAU 0.989 0.91 0.948 0.983 

Jynx torquilla JYTOR 0.963 0.75 0.714 0.732 

Lanius collurio LACOL 0.98 0.72 0.898 0.969 

Lanius senator LASEN 0.989 0.6 0.86 0.922 

Loxia curvirostra LOCUR 0.953 0.58 0.909 0.965 

Lullula arborea LUARB 0.969 0.68 0.76 0.883 

Luscinia megarhynchos LUMEG 0.991 0.5 0.804 0.891 

Merops apiaster MEAPI 0.971 0.56 0.839 0.909 

Milvus migrans MIMIG 0.963 0.62 0.811 0.866 

Milvus milvus MIMIL 0.976 0.6 0.936 0.991 

Monticola saxatilis MOSAX 0.973 0.69 0.954 0.987 



Monticola solitarius MOSOL 0.99 0.9 0.909 0.956 

Motacilla alba MOALB 0.977 0.88 0.797 0.87 

Motacilla cinerea MOCIN 0.977 0.65 0.716 0.731 

Muscicapa striata MUSTR 0.966 0.64 0.661 0.728 

Neophron percnopterus NEPER 0.982 0.67 0.905 0.968 

Oenanthe hispanica OEHIS 0.993 0.78 0.927 0.965 

Oenanthe leucura OEURA 0.996 0.55 0.997 0.999 

Oriolus oriolus ORORI 0.979 0.53 0.72 0.745 

Parus ater PAATE 0.975 0.63 0.895 0.948 

Parus caeruleus PACAE 0.981 0.52 0.852 0.907 

Parus cristatus PACRI 0.975 0.87 0.883 0.932 

Parus major PAMAJ 0.978 0.6 0.864 0.921 

Pernis apivorus PEAPI 0.961 0.76 0.868 0.926 

Petronia petronia PEPET 0.989 0.74 0.846 0.92 

Phoenicurus ochruros PHOCH 0.977 0.63 0.854 0.928 

Phylloscopus bonelli PHBON 0.987 0.62 0.839 0.908 

Phylloscopus collybita PHITA 0.964 0.64 0.878 0.931 

Ptyonoprogne rupestris PTRUP 0.983 0.65 0.788 0.887 

Pyrrhocorax 

pyrrhocorax 

PYRAX 0.984 0.61 0.91 0.963 

Regulus ignicapillus REIGN 0.981 0.61 0.891 0.937 

Saxicola torquata SATOR 0.973 0.53 0.707 0.713 

Serinus serinus SESER 0.985 0.51 0.812 0.896 

Sitta europaea SIEUR 0.979 0.62 0.907 0.964 

Streptopelia turtur STTUR 0.987 0.52 0.752 0.821 

Sylvia atricapilla SYATR 0.983 0.56 0.837 0.898 

Sylvia borin SYBOR 0.967 0.81 0.771 0.87 

Sylvia cantillans SYCAN 0.995 0.8 0.716 0.871 

Sylvia communis SYCOM 0.975 0.64 0.763 0.856 

Sylvia hortensis SYHOR 0.987 0.63 0.861 0.914 

Sylvia melanocephala SYMEL 0.996 0.82 0.816 0.934 

Sylvia undata SYUND 0.995 0.55 0.898 0.947 

Tetrao urogallus TEURO 0.977 0.65 0.976 0.997 

Troglodytes troglodytes TRTRO 0.983 0.68 0.875 0.924 

Turdus merula TUMER 0.984 0.66 0.903 0.94 

Turdus philomelos TUPHI 0.979 0.55 0.862 0.917 

MEAN  0.976 0.635 0.840 0.898 

AUC: High=AUC>0.9, Good=0.9<AUC<0.8; Fair=0.7<AUC<0.8; Poor=0.6<AUC<0.7. Fail AUC<0.6. 

 

  



 

Table A2.2. Sensitivity (that measures the percentage of presences correctly predicted) 

for the downscaled projections at the Catalan level. 

 
Species ACRON Sensitivity 

Accipiter gentilis ACGEN 0.31 

Accipiter nisus ACNIS 0.88 

Aegithalos caudatus AECAU 0.95 

Alectoris rufa ALRUF 0.97 

Anthus campestris ANCAM 0.53 

Anthus trivialis ANTRI 0.44 

Apus melba APMEL 0.72 

Aquila chrysaetos AQCHR 0.27 

Bubo bubo BUBUB 0.27 

Buteo buteo BUBUT 1 

Caprimulgus europaeus CAEUR 0.89 

Carduelis cannabina CAINA 1 

Carduelis carduelis CACAR 0.86 

Certhia brachydactyla CEBRA 0.98 

Circaetus gallicus CIGAL 0.61 

Columba oenas COOEN 0.29 

Columba palumbus COPAL 0.89 

Corvus corax CORAX 0.41 

Delichon urbica DEURB 0.99 

Dendrocopos major DEMAJ 0.84 

Dryocopus martius DRMAR 0.42 

Emberiza cia EMCIA 0.98 

Emberiza cirlus EMCIR 0.97 

Emberiza hortulana EMHOR 0.47 

Erithacus rubecula ERRUB 0.99 

Falco peregrinus FAPER 1 

Fringilla coelebs FRCOE 1 

Galerida theklae GATHE 0.5 

Garrulus glandarius GAGLA 0.9 

Gypaetus barbatus GYBAR 0.035 

Gyps fulvus GYFUL 0.14 

Hieraaetus fasciatus HIFAS 0.78 

Hieraaetus pennatus HIPEN 0.18 

Hirundo daurica HIDAU 0 

Jynx torquilla JYTOR 0.99 

Lanius collurio LACOL 0.82 

Lanius senator LASEN 0.97 

Loxia curvirostra LOCUR 0.25 

Lullula arborea LUARB 0.99 

Luscinia megarhynchos LUMEG 0.93 

Merops apiaster MEAPI 0.69 

Milvus migrans MIMIG 0.78 

Milvus milvus MIMIL 0.45 

Monticola saxatilis MOSAX 1 

Monticola solitarius MOSOL 1 

Motacilla alba MOALB 0.95 

Motacilla cinerea MOCIN 0.16 

Muscicapa striata MUSTR 0.98 

Neophron percnopterus NEPER 0.31 

Oenanthe hispanica OEHIS 0.82 

Oenanthe leucura OEURA 0.42 

Oriolus oriolus ORORI 1 



Parus ater PAATE 0.96 

Parus caeruleus PACAE 0.98 

Parus cristatus PACRI 0.87 

Parus major PAMAJ 0.98 

Pernis apivorus PEAPI 0.73 

Petronia petronia PEPET 0.54 

Phoenicurus ochruros PHOCH 0.75 

Phylloscopus bonelli PHBON 0.92 

Phylloscopus collybita PHITA 0.59 

Ptyonoprogne rupestris PTRUP 0.93 

Pyrrhocorax 

pyrrhocorax 

PYRAX 0.31 

Regulus ignicapillus REIGN 0.97 

Saxicola torquata SATOR 0.99 

Serinus serinus SESER 0.9 

Sitta europaea SIEUR 0.92 

Streptopelia turtur STTUR 0.99 

Sylvia atricapilla SYATR 1 

Sylvia borin SYBOR 0.76 

Sylvia cantillans SYCAN 0.98 

Sylvia communis SYCOM 0.92 

Sylvia hortensis SYHOR 0.96 

Sylvia melanocephala SYMEL 0.58 

Sylvia undata SYUND 0.73 

Tetrao urogallus TEURO 0.12 

Troglodytes troglodytes TRTRO 0.99 

Turdus merula TUMER 1 

Turdus philomelos TUPHI 0.7 

MEAN  0.73 

 

  



APPENDIX 3: Integrating climate and land cover variables in a hierarchical manner.  

 
This appendix shows the methodology used to hierarchically combine climate and land 

cover variables. This approach was adapted from a well-established hierarchical 

approach (Pearson et al., 2002), but differs in that the outcomes of climate and habitat 

models are included as separate predictors. This step allows a balanced contribution of 

each type of driver in shaping the predicted distributions of the species.  

  

 Previous studies demonstrated that climate impacts on the species’ 

geographical distribution is most evident at large-scales, with broad spatial extents 

most appropriate for capturing the climate niche and physiological tolerance range of 

species (Pearson et al., 2002). It has also showed that within the climate space defined 

by synoptic climate conditions other factors (e.g. land use/cover change) are affecting 

species’ distribution at finer scales in a hierarchical manner (Franklin, 1995; Pearson 

and Dawson, 2003). However, integrating climate and land cover changes in the same 

modelling framework remains as a challenging task. The traditional approach to model 

fitting includes all predictors in one single model, but some methodologies have 

already been proposed to hierarchically integrate climate and land use/cover variables 

(Pearson et al. 2002; Pearson, Dawson & Liu 2004). These studies confirmed the 

potential utility of multiscale approaches for understanding environmental limitations 

to species’ distributions, and demonstrated that species’ distribution models should be 

addressed to the appropriate spatial scale to avoid misleading results (Guisan and 

Thuiller, 2005). In particular, Pearson et al. (2004) proposed to integrate land-cover 

data into a correlative bioclimatic model in a scale-dependent hierarchical manner, 

whereby the bioclimatic envelope of a species is first identified at a coarse scale and 

then land-cover information at finer scale is incorporated as a input into a second 

model.  

 

 Using the same conceptual design as Pearson et al. (2004), we developed a 

novel methodology based on the statistical integration of two partial models, in which 

a climate model at European-level (hereafter called climate models) and land-cover 

model at Catalan-level (hereafter land cover model) were separately performed. The 



outcomes of these models were then combined to obtain a third prediction model 

including both climate and land cover constraints. We compared this methodology 

with the approach proposed by Pearson et al. (2002) and we highlighted the strengths 

and weaknesses of both methodologies to select of the best approach for our case 

study using a subset of 23 species covering the whole set of environmental responses.  

 

We assessed predictive accuracy of modelling approaches as follows: 1) using 

10-fold cross-validation of AUC (Fielding and Bell, 1997), TSS (Allouche et al., 2006) and 

Cohen’s Kappa statistic (Cohen, 1960); and 2) comparing visually the outcomes 

obtained from each approach based on expert knowledge of ecological requirements 

for each species; and 3) assessing the variable importance for all models provided as 

BIOMOD output for each modelling parameterization (for more details see BIOMOD 

package documentation at http://r-forge.r-project.org/projects/biomod/). The variable 

importance is determined as one minus the correlation score between the original 

prediction and the prediction made with a permuted variable, ranging between 0 (no 

importance) and 1 (high importance). 

 

Our results showed that including climate into land cover models improves the 

accuracy performance of the models (Table A3.1). Validation scores of Pearson’s 

hierarchical integration were higher than land cover models. The hierarchical approach 

is more robust under future climate change scenarios since a broader bioclimatic 

envelope is considered (Pearson et al. 2004). However, for some species, land cover 

variability was not fully captured within the bioclimatic envelope (see Table A3.2 and 

Fig. A3.1). Consequently, some habitat-specialist species (e.g. Dryocopus martius) 

would be predicted to be less sensitive to the land cover changes induced by each fire 

management scenario even though land cover type is strongly determining their 

distribution at regional level. The strong correlation between climate and occurrence 

data could partially “mask” the land cover effect into the model. However, our 

combined model was able to capture both the changes in the climate envelope and 

the fire-vegetation dynamics (compare variable importance in Table A3.2 between 

Pearson’s and our combined approach, and Fig. A3.1).  

 

http://r-forge.r-project.org/projects/biomod/


Table A3.1. Validation scores of AUC, TSS and Kappa coefficient for ensemble models obtained from 

models run with only land cover variables (Land cover), and after hierarchical integration of climate into 

the land cover models using Pearson’s approach (Pearson) and combined model approach (Combined). 

 

 Land cover Pearson Combined 

 AUC TSS Kappa AUC TSS Kappa AUC TSS Kappa 

          

ANCAM 0.912 0.662 0.351 0.927 0.685 0.403 0.957 0.76 0.553 

AQCHR 0.863 0.587 0.232 0.93 0.715 0.377 0.952 0.749 0.513 

BUBUB 0.838 0.54 0.13 0.832 0.553 0.122 0.891 0.626 0.277 

CAEUR 0.701 0.304 0.189 0.709 0.307 0.202 0.727 0.333 0.222 

CIGAL 0.676 0.294 0.135 0.701 0.307 0.168 0.708 0.304 0.182 

DRMAR 0.913 0.715 0.276 0.978 0.873 0.524 0.98 0.877 0.576 

EMHOR 0.926 0.72 0.449 0.946 0.756 0.514 0.969 0.794 0.618 

FAPER 0.818 0.5 0.188 0.828 0.574 0.181 0.859 0.573 0.289 

GATHE 0.919 0.669 0.514 0.941 0.741 0.567 0.958 0.762 0.652 

GYBAR 0.926 0.725 0.24 0.979 0.92 0.396 0.984 0.9 0.442 

GYFUL 0.868 0.571 0.386 0.929 0.699 0.548 0.941 0.711 0.615 

HIFAS 0.98 0.925 0.263 0.992 0.949 0.341 0.997 0.961 0.354 

HIPEN 0.901 0.797 0.083 0.956 0.883 0.187 0.971 0.894 0.221 

LACOL 0.898 0.617 0.446 0.955 0.774 0.603 0.969 0.796 0.684 

LUARB 0.76 0.378 0.369 0.878 0.582 0.535 0.883 0.608 0.584 

MIMIG 0.811 0.494 0.147 0.846 0.551 0.189 0.866 0.578 0.245 

MIMIL 0.936 0.846 0.18 0.974 0.933 0.28 0.991 0.958 0.373 

NEPER 0.905 0.691 0.147 0.949 0.795 0.258 0.968 0.817 0.313 

OEURA 0.997 0.958 0.278 0.997 0.959 0.283 0.999 0.971 0.363 

PEAPI 0.868 0.663 0.116 0.892 0.727 0.11 0.926 0.721 0.172 

PYRAX 0.91 0.658 0.426 0.941 0.731 0.539 0.963 0.763 0.704 

SYUND 0.898 0.626 0.547 0.911 0.637 0.575 0.947 0.722 0.682 

TEURO 0.976 0.917 0.235 0.995 0.958 0.282 0.997 0.958 0.28 

mean 0.878 0.646 0.275 0.912 0.722 0.355 0.930 0.745 0.431 

 

  



Table A3.2. Variable importance for Dryocopus martius (DRMAR) using Pearson’s and our combined 

model approaches for each modelling technique for the 10-fold cross-validation procedures: 

Generalized Linear Models (GLM), Generalized Additive Models (GAM), Classification Tree Algorithms 

(CTA), Generalized Boosted Regression Models (GBM), and Random Forest (RF). 

 

 Combined model approach Pearson's approach 

Run 1 GLM GAM CTA RF GBM  GLM GAM CTA RF GBM 

ClimateModel  0.681 0.676 0.761 0.706 0.672 ClimateModel 0.805 0.792 0.980 0.710 0.836 

LandCoverModel    0.556 0.571 0.614 0.698 0.638 LCT_v1 0.114 0.187 0.119 0.284 0.053 

      LCT_v2 0.060 0.056 0.000 0.201 0.006 

      LCT_v3 0.012 0.087 0.000 0.184 0.074 

      LCT_v4 0.120 0.256 0.000 0.168 0.231 

      FireAgeClasses_v1 0.062 0.342 0.000 0.002 0.000 

      FireAgeClasses_v2 0.015 0.324 0.000 0.011 0.000 

      FireAgeClasses_v3 0.000 0.319 0.000 0.013 0.000 

Run2 GLM GAM CTA RF GBM  GLM GAM CTA RF GBM 

ClimateModel  0.713 0.670 0.684 0.747 0.643 ClimateModel 0.753 0.801 1 0.689 0.780 

LandCoverModel   0.402 0.558 0.636 0.674 0.629 LCT_v1 0.043 0.192 0 0.153 0.010 

      LCT_v2 0.024 0.057 0 0.231 0.038 

      LCT_v3 0.054 0.089 0 0.178 0.136 

      LCT_v4 0.212 0.277 0 0.216 0.295 

      FireAgeClasses_v1 0.069 0.339 0 0.001 0.000 

      FireAgeClasses_v2 0.000 0.329 0 0.016 0.000 

      FireAgeClasses_v3 0.000 0.327 0 0.025 0.000 

Run3 GLM GAM CTA RF GBM  GLM GAM CTA RF GBM 

ClimateModel  0.632 0.670 0.904 0.719 0.665 ClimateModel 0.849 0.801 1 0.825 0.829 

LandCoverModel    0.535 0.558 0.286 0.720 0.655 LCT_v1 0.040 0.192 0 0.224 0.013 

      LCT_v2 0.003 0.057 0 0.194 0.008 

      LCT_v3 0.057 0.089 0 0.208 0.081 

      LCT_v4 0.082 0.277 0 0.104 0.262 

      FireAgeClasses_v1 0.249 0.339 0 0.029 0.004 

      FireAgeClasses_v2 0.231 0.329 0 0.014 0.000 

      FireAgeClasses_v3 0.473 0.327 0 0.027 0.001 

       GLM GAM CTA RF GBM 

Run4 GLM GAM CTA RF GBM ClimateModel 0.831 0.801 0.883 0.781 0.820 

ClimateModel  0.584 0.670 0.789 0.696 0.667 LCT_v1 0.063 0.192 0.112 0.228 0.018 

LandCoverModel    0.573 0.558 0.611 0.671 0.627 LCT_v2 0.038 0.057 0.000 0.195 0.040 

      LCT_v3 0.020 0.089 0.000 0.146 0.036 

      LCT_v4 0.048 0.277 0.291 0.156 0.301 

      FireAgeClasses_v1 0.305 0.339 0.000 0.017 0.003 

      FireAgeClasses_v2 0.345 0.329 0.000 0.015 0.000 

      FireAgeClasses_v3 0.374 0.327 0.000 0.041 0.000 

Run5 GLM GAM CTA RF GBM  GLM GAM CTA RF GBM 

ClimateModel  0.710 0.670 0.791 0.729 0.672 ClimateModel 0.759 0.801 0.847 0.751 0.806 

LandCoverModel    0.451 0.558 0.441 0.696 0.607 LCT_v1 0.051 0.192 0.000 0.238 0.016 

      LCT_v2 0.017 0.057 0.000 0.218 0.024 

      LCT_v3 0.012 0.089 0.000 0.160 0.063 

      LCT_v4 0.222 0.277 0.368 0.149 0.353 

      FireAgeClasses_v1 0.150 0.339 0.000 0.002 0.000 



      FireAgeClasses_v2 0.112 0.329 0.000 0.016 0.000 

      FireAgeClasses_v3 0.072 0.327 0.000 0.023 0.001 

Run6 GLM GAM CTA RF GBM  GLM GAM CTA RF GBM 

ClimateModel  0.657 0.670 0.788 0.731 0.692 ClimateModel 0.833 0.801 1 0.737 0.834 

LandCoverModel    0.466 0.558 0.515 0.733 0.595 LCT_v1 0.109 0.192 0 0.276 0.025 

      LCT_v2 0.053 0.057 0 0.225 0.017 

      LCT_v3 0.022 0.089 0 0.185 0.054 

      LCT_v4 0.023 0.277 0 0.138 0.259 

      FireAgeClasses_v1 0.305 0.339 0 0.025 0.005 

      FireAgeClasses_v2 0.352 0.329 0 0.025 0.000 

      FireAgeClasses_v3 0.399 0.327 0 0.070 0.000 

Run7 GLM GAM CTA RF GBM  GLM GAM CTA RF GBM 

ClimateModel  0.436 0.670 0.792 0.668 0.698 ClimateModel 0.777 0.801 1 0.771 0.829 

LandCoverModel    0.641 0.558 0.537 0.710 0.618 LCT_v1 0.040 0.192 0 0.231 0.014 

      LCT_v2 0.011 0.057 0 0.219 0.017 

      LCT_v3 0.026 0.089 0 0.213 0.061 

      LCT_v4 0.200 0.277 0 0.170 0.303 

      FireAgeClasses_v1 0.069 0.339 0 0.002 0.000 

      FireAgeClasses_v2 0.000 0.329 0 0.006 0.000 

      FireAgeClasses_v3 0.069 0.327 0 0.016 0.000 

Run8 GLM GAM CTA RF GBM  GLM GAM CTA RF GBM 

ClimateModel  0.575 0.670 0.752 0.679 0.682 ClimateModel 0.751 0.801 1 0.796 0.777 

LandCoverModel    0.577 0.558 0.614 0.751 0.636 LCT_v1 0.040 0.192 0 0.205 0.011 

      LCT_v2 0.023 0.057 0 0.222 0.234 

      LCT_v3 0.021 0.089 0 0.214 0.067 

      LCT_v4 0.257 0.277 0 0.160 0.300 

      FireAgeClasses_v1 0.068 0.339 0 0.002 0.000 

      FireAgeClasses_v2 0.025 0.329 0 0.018 0.000 

      FireAgeClasses_v3 0.000 0.327 0 0.039 0.000 

Run9 GLM GAM CTA RF GBM  GLM GAM CTA RF GBM 

ClimateModel  0.658 0.670 0.814 0.735 0.699 ClimateModel 0.845 0.801 0.906 0.756 0.857 

LandCoverModel    0.488 0.558 0.510 0.712 0.584 LCT_v1 0.176 0.192 0.107 0.246 0.033 

      LCT_v2 0.146 0.057 0.000 0.275 0.006 

      LCT_v3 0.037 0.089 0.000 0.199 0.021 

      LCT_v4 0.000 0.277 0.295 0.145 0.252 

      FireAgeClasses_v1 0.309 0.339 0.000 0.009 0.006 

      FireAgeClasses_v2 0.349 0.329 0.000 0.022 0.000 

      FireAgeClasses_v3 0.383 0.327 0.000 0.059 0.000 

Run10 GLM GAM CTA RF GBM  GLM GAM CTA RF GBM 

ClimateModel  0.607 0.670 0.793 0.719 0.684 ClimateModel 0.817 0.801 0.923 0.714 0.798 

LandCoverModel    0.555 0.558 0.604 0.744 0.614 LCT_v1 0.050 0.192 0.000 0.276 0.011 

      LCT_v2 0.065 0.057 0.000 0.305 0.022 

      LCT_v3 0.048 0.089 0.085 0.236 0.095 

      LCT_v4 0.060 0.277 0.283 0.168 0.279 

      FireAgeClasses_v1 0.182 0.339 0.000 0.019 0.007 

      FireAgeClasses_v2 0.000 0.329 0.000 0.031 0.000 

      FireAgeClasses_v3 0.237 0.327 0.000 0.059 0.000 

 

  



Figure A3.1. Predictions for the distribution of Dryocopus martius (DRMAR) in 2000 (on the left) and 

2050 (on the right) derived from: 1) the climate model (labelled as ‘climate only’), 2) the land cover 

model (labelled as ‘LCT only’), 3) the Pearson’s approach (labelled as ‘hierarchical’) and 4) our combined 

model approach (labelled as ‘Combined’). Yellow dots show the presences, red dots the absences.  
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APPENDIX 4: Evaluation of bird assemblage prediction from the SESAM framework. 

 

This appendix shows our ability to predict the community composition from the 

SESAM framework (i.e., after applying the Probability Ranking Rule to constrain species 

richness). To do so, we tested the community composition predictions derived from 

the SESAM framework against the empirical (i.e. observed) bird composition for each 

of the 3,077 grid cells. For comparison, we also simulated community composition 

from: 1) a null model based on a random selection of species that could potentially 

occur in the community until the predicted richness is reached (cf. based on SDM 

outputs); and 2) the Beals' smoothing index, which replaces each entry in the 

community data with predictions of occurrence on the basis of its co-occurrences with 

the remaining species (De Cáceres and Legendre 2008).  

 

We calculated ten evaluation metrics for each grid cell, which reflect different 

aspects of assemblage predictions (Pottier et al. 2013): (1) species richness deviation  

(i.e. the deviation of the predicted species richness to the observed), (2) 

overprediction (i.e. the proportion of species predicted as present but not observed 

among the species predicted as present), (3) underprediction (i.e. the proportion of 

species predicted as absent but observed among the species observed as present), (4) 

assemblage prediction success (i.e. the proportion of correct predictions), (5) 

assemblage specificity (i.e. the proportion of absences that were correctly predicted), 

(6) assemblage sensitivity (i.e. the proportion of presences that were correctly 

predicted), (7) assemblage kappa (i.e. the proportion of specific agreement) (8) TSS 

(i.e. sensitivity + specificity - 1), (9) the Sorensen index (i.e. the similarity of community 

composition between the observation and the prediction) and (10) the Jaccard index 

(another widely used metric of community similarity) (Pottier et al. 2013, Cola et al. 

2017). All these evaluation metrics were computed using the function 

‘ecospat.CommunityEval’, available in the R package ‘ecospat’ (Cola et al. 2017). The 

values for each grid cell were then averaged to show the mean values for each 

evaluation metric (Table A4.1).  

 



In addition, we computed the Bray Curtis index to quantify the compositional 

dissimilarity between all pairs of grid cells for the empirical and predicted communities 

(cf. the spatial turnover in species composition; i.e., beta diversity). Secondly, we 

estimated the correlation between the dissimilarity matrices calculated for the 

observed community composition and the composition predicted after applying the 

Probability Ranking Rule (PRR) using a Mantel test (with 999 permutations). We also 

compared against simulated community compositions from: 1) a null model based on a 

random selection of species that could potentially occur in the community until the 

predicted richness is reached (cf. based on SDM outputs); and 2) the Beals' smoothing 

index.  

 

  Our results showed that the community composition predictions obtained after 

applying the PRR were more accurate than predictions obtained from a null model (i.e. 

based on a random selection of the species to be removed from the final community 

until the predicted richness is reached) or from the Beals smoothing index (i.e. 

predictions of occurrence on the basis of its co-occurrences with the remaining 

species) (see Table A4.1).  

 

 Null model Beals PRR 

Deviation richness prediction 0.18 -0.02 0.17 

Overprediction 0.24 0.16 0.10 

Underprediction 0.77 0.52 0.33 

Prediction success 0.65 0.75 0.85 

Sensitivity 0.23 - 0.66 

Specificity 0.76 0.83 0.90 

Kappa 0 0.30 0.55 

TSS 0 - 0.55 

Sorensen 0.23 0.46 0.65 

Jaccard 0.13 0.30 0.50 

Table A4.1. Accuracy of bird community composition for each of the ten evolution metrics.  

 

 

 In particular, TSS, Kappa, sensitivity and specificity were found to be higher 

with the PRR than with Beals index, or a null model; which indicates that the largest 



proportion of presence and absences were found to be correctly predicted under our 

approach (Table A4.1). The over/underprediction (i.e. the proportion of species 

predicted as present/absent but not observed among the species predicted as present) 

was found to be the lowest after applying the PRR. The deviation of richness was 

almost the same for the SESAM framework after applying the PRR or a null model 

(Table A4.1), as the number of species to be removed from the final composition is the 

same (cf. output from species richness models). However, the similarity between 

observed and predicted community composition is significantly higher when compared 

against a null model (t = 123.3; p < 0.001; mean SorensenPRR = 0.65; mean 

Sorensennullmodel = 0.23).  

 

 In terms of spatial turnover in species composition (i.e., ß-diversity), our results 

showed that the similarity between the observed and predicted community 

composition was higher after applying the PRR (MantelPRR r statistic of 0.63, p-value < 

0.05) than using a null model (MantelNULLMODEL r statistic, r = 0.40), or the Beal’s 

smoothing index (MantelBEALS r statistic, r = 0.54).  

 

 These results confirm that the PRR performs better than a null model based on 

a random selection, or on its co-occurrences with the remaining species.  

 

References 

Cola, V. Di et al. 2017. ecospat: an R package to support spatial analyses and modeling 

of species niches and distributions. - Ecography. 40: 1–14. 

De Cáceres, M. and Legendre, P. 2008. Beals smoothing revisited. - Oecologia 156: 

657–669. 

Pottier, J. et al. 2013. The accuracy of plant assemblage prediction from species 

distribution models varies along environmental gradients. - Glob. Ecol. Biogeogr. 

22: 52–63. 

 


	ECOG-02990_Appendix1-4.pdf
	References
	APPENDIX 3: Integrating climate and land cover variables in a hierarchical manner.
	References
	APPENDIX 4: Evaluation of bird assemblage prediction from the SESAM framework.
	References


