Variable Selection and Accurate Predictions in Habitat Modelling: a
Shrinkage Approach - Appendix

Matthieu Authiera,d,e, Claire Sarauxb, and Clara Péronc,d

aObservatoire PELAGIS UMS 3462, Université de La Rochelle, 5 Allées de l’Océan 17000 La Rochelle, France
bIfremer (Institut Français de Recherche pour l’Exploitation de la Mer), UMR MARBEC, Sète, France
cInstitute for Marine and Antarctic Studies, University of Tasmania and Australian Antarctic Division, 203 Channel highway, Kingston, Tasmania 7050, Australia
dÉcologie Spatiale des Populations, Centre d’Écologie Fonctionnelle et Évolutive, 1919 route de Mende, 34293 Montpellier cedex 5, France
eauthier@gmail.com

February 15, 2016

Contents

List of Figures 1
List of Tables 2

List of Figures

A.1 : Probability density function on the shrinkage coefficient induced with a Horseshoe prior (that is, shrinkage profile of the horseshoe prior). Denoting β_{unshrunk} and β_{shrunk} the unshrunk and shrunk regression coefficient, the shrinkage coefficient s is such that $\beta_{\text{shrunk}} = s \times \beta_{\text{unshrunk}}$. If this coefficient is 0, there is complete shrinkage and $\beta_{\text{shrunk}} = 0$. If this coefficient is 1, there is no shrinkage and $\beta_{\text{shrunk}} = \beta_{\text{unshrunk}}$. The horseshoe prior favours either complete or no shrinkage. 4
A.2: Boxplots of the small pelagic fish biomass data during the 2011 PELMED survey. Boxes represent the interquartile range and the vertical line within, the median. Whiskers extend to the lower and higher hinge defined as 1.5 × the interquartile range. All data are right-skewed betraying a large proportion of zeros and a few extreme values. The x-axis is on a logarithmic scale.

A.3: Correlation matrices for the different datasets. Empirical pairwise correlations are printed and color-coded (according their absolute magnitude). Calibration and validation data have a similar correlation structure, which is slightly different from that of the prediction data. These graphs were done thanks to code provided by Peter Haschke (R code lifted from http://www.peterhaschke.com/r/2013/04/23/CorrelationMatrix.html).

A.4: Raw data and comparison of model predictions (posterior median) for juvenile European anchovies log-biomasses. The distribution during summer 2011 showed a clear spatial structure. The black dotted line materializes the Carmague Natura 2000 protected area.

A.5: Raw data and comparison of model predictions (posterior median) for adult European anchovies log-biomasses. The distribution during summer 2011 showed a clear spatial structure. The black dotted line materializes the Carmague Natura 2000 protected area.

A.6: Raw data and comparison of model predictions (posterior median) for juvenile European sardine log-biomasses. The distribution during summer 2011 showed a clear pattern linked to depth: juvenile sardines were abundant very close to the coastline of the Gulf of Lion. The black dotted line materializes the Carmague Natura 2000 protected area.

A.7: Raw data and comparison of model predictions (posterior median) for adult European sardine log-biomasses. The distribution during summer 2011 showed no obvious spatial structure. The black dotted line materializes the Carmague Natura 2000 protected area.

A.8: Raw data and comparison of model predictions (posterior median) for juvenile sprat log-biomasses. The distribution during summer 2011 showed a clear spatial structure. The black dotted line materializes the Carmague Natura 2000 protected area.

A.9: Plots of the estimated posterior standard error of the mean against the estimated posterior mean (β_p). Estimates from M_2 were noisy, especially the coefficients linked to sediments. In contrast, the funnel shape of plots from $M_{1.5}$ illustrates how shrinkage greatly reduced both the estimated posterior mean and standard error of the mean.

A.10: Plots of the variance in estimated regression coefficients β_p between cross-validations against the within-variance. Dots are proportional to a z-score (the ratio of estimated posterior mean to its standard error) of the coefficients averaged across the different cross-validation datasets. The between-variance was greatest for M_2 illustrate instability in estimation. In contrast, this between-variance was greatly reduced with $M_{1.5}$ and comparable to the within-variance. The grey dashed line shows the identity line (between-variance = within-variance).
List of Tables

A.1 Data Sources of Environmental Inputs .. 6
Horseshoe Prior

Figure A.1: Probability density function on the shrinkage coefficient induced with a Horseshoe prior (that is, shrinkage profile of the horseshoe prior). Denoting β_{unshrunk} and β_{shrunk} the unshrunk and shrunk regression coefficient, the shrinkage coefficient s is such that $\beta_{\text{shrunk}} = s \times \beta_{\text{unshrunk}}$. If this coefficient is 0, there is complete shrinkage and $\beta_{\text{shrunk}} = 0$. If this coefficient is 1, there is no shrinkage and $\beta_{\text{shrunk}} = \beta_{\text{unshrunk}}$. The horseshoe prior favours either complete or no shrinkage.
Figure A.2: Boxplots of the small pelagic fish biomass data during the 2011 PELMED survey. Boxes represent the interquartile range and the vertical line within, the median. Whiskers extend to the lower and higher hinge defined as $1.5 \times$ the interquartile range. All data are right-skewed betraying a large proportion of zeros and a few extreme values. The x-axis is on a logarithmic scale.
Environmental Inputs: Source and Resolution

Table A.1: Data Sources of Environmental Inputs.

<table>
<thead>
<tr>
<th>Input</th>
<th>Spatial resolution</th>
<th>Temporal frequency</th>
<th>Source</th>
<th>url</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bathymetry</td>
<td>0.01666°</td>
<td>MODIS\Aqua</td>
<td>http://coastwatch.pfeg.noaa.gov/coastwatch/CWBrowseWW360.jsp</td>
<td></td>
</tr>
<tr>
<td>Sea Surface Temperature</td>
<td>0.05°</td>
<td>weekly</td>
<td>MODIS\Aqua</td>
<td>http://coastwatch.pfeg.noaa.gov/coastwatch/CWBrowseWW360.jsp</td>
</tr>
<tr>
<td>Chlorophyll a Concentration</td>
<td>0.05°</td>
<td>weekly</td>
<td>MODIS\Aqua</td>
<td>http://coastwatch.pfeg.noaa.gov/coastwatch/CWBrowseWW360.jsp</td>
</tr>
</tbody>
</table>
Correlation matrices

Figure A.3: Correlation matrices for the different datasets. Empirical pairwise correlations are printed and color-coded (according their absolute magnitude). Calibration and validation data have a similar correlation structure, which is slightly different from that of the prediction data. These graphs were done thanks to code provided by Peter Haschke (R code lifted from http://www.peterhaschke.com/r/2013/04/23/CorrelationMatrix.html).
Maps

Juvenile anchovies

Figure A.4: Raw data and comparison of model predictions (posterior median) for juvenile European anchovies log-biomasses. The distribution during summer 2011 showed a clear spatial structure. The black dotted line materializes the Carmague Natura 2000 protected area.
Adult anchovies

Figure A.5: Raw data and comparison of model predictions (posterior median) for adult European anchovies log-biomasses. The distribution during summer 2011 showed a clear spatial structure. The black dotted line materializes the Carmague Natura 2000 protected area.
Figure A.6: Raw data and comparison of model predictions (posterior median) for juvenile European sardine log-biomasses. The distribution during summer 2011 showed a clear pattern linked to depth: juvenile sardines were abundant very close to the coastline of the Gulf of Lion. The black dotted line materializes the Carmague Natura 2000 protected area.
Figure A.7: Raw data and comparison of model predictions (posterior median) for adult European sardine log-biomasses. The distribution during summer 2011 showed no obvious spatial structure. The black dotted line materializes the Camargue Natura 2000 protected area.
Figure A.8: Raw data and comparison of model predictions (posterior median) for juvenile sprat log-biomasses. The distribution during summer 2011 showed a clear spatial structure. The black dotted line materializes the Carmague Natura 2000 protected area.
Figure A.9: Plots of the estimated posterior standard error of the mean against the estimated posterior mean (β_p). Estimates from M_2 were noisy, especially the coefficients linked to sediments. In contrast, the funnel shape of plots from $M_3 - 5$ illustrates how shrinkage greatly reduced both the estimated posterior mean and standard error of the mean.
Figure A.10: Plots of the variance in estimated regression coefficients β_p between cross-validations against the within-variance. Dots are proportional to a z-score (the ratio of estimated posterior mean to its standard error) of the coefficients averaged across the different cross-validation datasets. The between-variance was greatest for M_2 illustrating instability in estimation. In contrast, this between-variance was greatly reduced with M_3-5 and comparable to the within-variance. The grey dashed line shows the identity line (between-variance = within-variance).
STAN code

All models were fitted with CmdStan v.2.8.0, which is a command line interface to the Stan probabilistic modelling language (Stan Development Team, 2015). Each model was compiled as an executable; e.g., model M_1 was written down into a text file called $M_1.stan$, and then compiled into the executable $M_1.exe$. Cross-validation was performed by multiple calls to the different executables.
Model M_1

data {
 int<lower=1> n_obs; // sample size
 vector<lower=0>[n_obs] BIOMASS; // response variable
 matrix[n_obs,n_obs] DIST; // distance matrix
}

parameters {
 real cst; // intercept
 real<lower=0> sd_spatial; // sill
 real<lower=0.1, upper=200> rho; // range parameter
 real<lower=0> sd_res; // nugget
 vector[n_obs] z; // spatial random effects, Cholesky parametrization
}

model {
 // spatial effects
 matrix[n_obs,n_obs] Sigma; // spatial covariance matrix
 vector[n_obs] spatial; // spatial random effects
 for (i in 1:(n_obs-1)) {
 Sigma[i,i] <- square(sd_spatial);
 for (j in (i+1):n_obs) {
 // Matern covariance function of order 3/2
 Sigma[i,j] <- (1.0+DIST[i,j]*sqrt(3.0)/rho)*exp(-(DIST[i,j]*sqrt(3.0)/rho))*square(sd_spatial);
 Sigma[j,i] <- Sigma[i,j];
 }
 }
 Sigma[n_obs,n_obs] <- square(sd_spatial);
 // 'Matt trick'
 spatial <- cholesky_decompose(Sigma) * z;
 // Priors
 z ~ normal(0.0, 1.0);
 rho ~ uniform(0.1, 200);
 sd_res ~ cauchy(0.0, 1.0);
 sd_spatial ~ cauchy(0,1.0);
 cst ~ student_t(7.0, 0.0, 10.0);
 // likelihood
 BIOMASS ~ normal(cst + spatial, sd_res);
}
Model M_2

data {
 int<lower=1> n_obs;
 int<lower=1> n_pred; // number of predictors
 real<lower=0> BIOMASS[n_obs];
 matrix[n_obs,n_pred] X; // matrix of standardized predictors
 matrix[n_obs,n_obs] DIST;
}

parameters {
 real cst;
 vector[n_pred] beta; // regression coefficients
 real<lower=0> sd_spatial;
 real<lower=0.1, upper=200> rho;
 real<lower=0> sd_res;
 vector[n_obs] z;
}

model {
 // spatial effects
 matrix[n_obs,n_obs] Sigma;
 vector[n_obs] spatial;
 for (i in 1:(n_obs-1)) {
 Sigma[i,i] <- square(sd_spatial);
 for (j in (i+1):n_obs) {
 Sigma[i,j] <- (1.0+DIST[i,j]*sqrt(3.0)/rho)*exp(-DIST[i,j]*sqrt(3.0)/rho)*square(sd_spatial);
 Sigma[j,i] <- Sigma[i,j];
 }
 }
 Sigma[n_obs,n_obs] <- square(sd_spatial);

 // 'Matt trick'
 spatial <- cholesky_decompose(Sigma) * z;
 // Priors
 z ~ normal(0.0, 1.0);
 rho ~ uniform(0.1, 200);
 sd_res ~ cauchy(0.0, 1.0);
 beta ~ student_t(7.0, 0.0, 2.5); // independent Student-t priors
 sd_spatial ~ cauchy(0.0, 1.0);
 cst ~ student_t(7.0, 0.0, 10.0);
// Likelihood
for (i in 1:n_obs) {
 BIOMASS[i] ~ normal(cst + dot_product(beta, X[i]) + spatial[i], sd_res);
}

Model M_3

data {
 int<lower=1> n_obs;
 int<lower=1> n_pred;
 real<lower=0> BIOMASS[n_obs];
 matrix[n_obs,n_pred] X;
 matrix[n_obs,n_obs] DIST;
}

parameters {
 real cst;
 vector[n_pred] beta;
 real<lower=0> global; // global shrinkage parameter
 vector<lower=0>[n_pred] local; // local shrinkage parameters
 real<lower=0> sd_spatial;
 real<lower=0.1, upper=200> rho;
 real<lower=0> sd_res;
 vector[n_obs] z;
}

model {
 // spatial effects
 matrix[n_obs,n_obs] Sigma;
 vector[n_obs] spatial;
 for (i in 1:(n_obs-1)) {
 Sigma[i,i] <- square(sd_spatial);
 for (j in (i+1):n_obs) {
 Sigma[i,j] <- (1.0+DIST[i,j]*sqrt(3.0)/rho)*exp(-DIST[i,j]*sqrt(3.0)/rho)*square(sd_spatial);
 Sigma[j,i] <- Sigma[i,j];
 }
 }
 Sigma[n_obs,n_obs] <- square(sd_spatial);
 // 'Matt trick'
 spatial <- cholesky_decompose(Sigma) * z;
 // Priors
 z ~ normal(0.0, 1.0);
 rho ~ uniform(0.1, 200);
 sd_res ~ cauchy(0.0, 1.0);
 global ~ cauchy(0.0, sd_res);
local ~ cauchy(0.0, global);
beta ~ normal(0.0, local); // this is the horseshoe prior
sd_spatial ~ cauchy(0.0, 1.0);
cst ~ student_t(7.0, 0.0, 10.0);

// Likelihood
for (i in 1:n_obs) {
 BIOMASS[i] ~ normal(cst + dot_product(beta, X[i]) + spatial[i], sd_res);
}

Model M_4

data {
 int<lower=1> n_obs;
 int<lower=1> n_pred;
 real<lower=0> BIOMASS[n_obs];
 matrix[n_obs,n_pred] X;
 matrix[n_obs,n_obs] DIST;
 // indicator variable, =1 if BIOMASS=0, 0 otherwise
 int<lower=0,upper=1> IS_ZERO[n_obs];
}

parameters {
 real cst_beta;
 real cst_alpha;
 vector[n_pred] beta;
 vector[n_pred] alpha; // coefficients for zero-inflated model
 real<lower=0> global_beta;
 vector<lower=0>[n_pred] local_beta;
 real<lower=0> global_alpha;
 vector<lower=0>[n_pred] local_alpha;
 real<lower=0> sd_spatial;
 real<lower=0.1, upper=200> rho;
 real<lower=0> sd_res;
 vector[n_obs] z;
}

model {
 // spatial effects
 matrix[n_obs,n_obs] Sigma;
 vector[n_obs] spatial;
 for (i in 1:(n_obs-1)) {
 Sigma[i,i] <- square(sd_spatial);
 for (j in (i+1):n_obs) {
 Sigma[i,j] <- (1.0+DIST[i,j]*sqrt(3.0)/rho)*exp(-DIST[i,j]*sqrt(3.0)/rho)*square(sd_spatial);
 Sigma[j,i] <- Sigma[i,j];
 }
 }
 Sigma[n_obs,n_obs] <- square(sd_spatial);
 // 'Matt trick'
spatial <- cholesky_decompose(Sigma) * z;

// Priors
z ~ normal(0.0, 1.0);
rho ~ uniform(0.1, 200);
sd_res ~ cauchy(0.0, 1.0);
global_beta ~ cauchy(0, sd_res);
local_beta ~ cauchy(0, global_beta);
beta ~ normal(0, local_beta);
global_alpha ~ cauchy(0.0, 1.0);
local_alpha ~ cauchy(0.0, global_alpha);
alpha ~ normal(0.0, local_alpha);
sd_spatial ~ cauchy(0.0, 1.0);
cst_beta ~ student_t(7.0, 0.0, 10.0);
cst_alpha ~ student_t(7.0, 0.0, 10.0);

// Likelihood
for (i in 1:n_obs) {
 real mu;
 real prob_zero;
 real u;
 mu <- cst_beta + dot_product(beta, X[i]) + spatial[i];
 // data augmentation: probit model for zero-inflation
 prob_zero <- Phi(cst_alpha + dot_product(alpha, X[i]));
 // this is the likelihood of a zero-inflated normal model
 u <- if_else(IS_ZERO[i],
 log(prob_zero + (1-prob_zero)*exp(normal_log(BIOMASS[i], mu, sd_res))),
 log1m(prob_zero) + normal_log(BIOMASS[i], mu, sd_res));
 increment_log_prob(u);
}
Model M_5

data {
 int<lower=1> n_obs;
 int<lower=1> n_pred;
 real<lower=0> BIOMASS[n_obs];
 matrix[n_obs,n_pred] X;
 int<lower=0,upper=1> IS_ZERO[n_obs];
}

parameters {
 real cst_beta;
 real cst_alpha;
 vector[n_pred] beta;
 vector[n_pred] alpha;
 real<lower=0> global_beta;
 vector<lower=0>[n_pred] local_beta;
 real<lower=0> global_alpha;
 vector<lower=0>[n_pred] local_alpha;
 real<lower=0> sd_res;
}

model {
 // Priors
 sd_res ~ cauchy(0.0, 1.0);
 global_beta ~ cauchy(0, sd_res);
 local_beta ~ cauchy(0, global_beta);
 beta ~ normal(0, local_beta);
 global_alpha ~ cauchy(0.0, 1.0);
 local_alpha ~ cauchy(0.0, global_alpha);
 alpha ~ normal(0.0, local_alpha);
 cst_beta ~ student_t(7.0, 0.0, 10.0);
 cst_alpha ~ student_t(7.0, 0.0, 10.0);
 // Likelihood
 for (i in 1:n_obs) {
 real mu;
 real prob_zero;
 real u;
 mu <- cst_beta + dot_product(bbeta, X[i]);
 // data augmentation: probit model for zero-inflation
prob_zero <- Phi(cst_alpha + dot_product(alpha, X[i]));

// this is the likelihood of a zero-inflated normal model
u <- if_else(IS_ZERO[i],
 log(prob_zero + (1-prob_zero)*exp(normal_log(BIOMASS[i], mu, sd_res))) ,
 log1m(prob_zero) + normal_log(BIOMASS[i], mu, sd_res));

increment_log_prob(u);
}

References