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Appendix 1

Hierarchical geostatistics models for wildlife populations

This model is a generalization of the Poisson kriging model introduced in Monestiez et al.

(2006) where they proposed a corrected variogram estimator that takes account of variability

added by the Poisson observation process in order to produce maps of relative abundance.

The model presented here takes account explicitly of the observation process and of the

deterministic trend often observed in species’ spatial distributions (Bellier et al. 2010).

1 Expectation and variance of Zs

From equations of the hierarchical model ( Eq. 1 and 2 in the main text in the section ' a

spatial hierarchical model for count data ') as Zs | Ys ∼ P (λ) with a mean λ equal to the

spatial field Ys it follows directly that,

E[Zs|Xs] = Ys = msXs

Var[Zs|Xs] = Ys = msXs

E
[
(Zs)

2
∣∣Xs

]
= Ys + Y 2

s = msXs +m2
s X

2
s , (A1)
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and the unconditional (marginal) distribution of the observed data

E[Zs] = ms

Var[Zs] = m2
s σ

2
X +ms. (A2)

For the covariance expression, the conditional independence of observations at different

sites leads to

E
[
Zs Zs′

∣∣X] = Cov
[
Zs, Zs′ |X

]
+ E[Zs|Xs] E[Zs′ |Xs′ ]

= δss′ msXs +msms′ XsXs′ , (A3)

where δss′ is Kronecker’ s 'delta which is equal to 1 if s = s′ and 0 otherwise.

2 Variogram expressions

In order to characterize the relationship between the variograms of Z and X, we develop the

expressions of the two first moments of (Zs − Zs′).

E
[
Zs − Zs′

∣∣X] = E[Zs|Xs]− E[Zs′|Xs′ ] = msXs −ms′ Xs′

E
[
Zs − Zs′

]
= E

[
X
] (
ms −ms′

)
= ms −ms′ . (A4)

The second order moment can be derived from Eq. A2 and A3,

E
[(
Zs − Zs′

)2 ∣∣X] = E
[
(Zs)

2
∣∣Xs

]
+E
[
(Zs′)

2
∣∣Xs′

]
−2 E

[
Zs Zs′

∣∣X]
=
(
Ys + Ys′ − 2δss′ Ys

)
+
(
Ys − Ys′

)2
.

E
[(
Zs − Zs′

)2 ]
= E

[(
Ys + Ys′ − 2 δss′ Ys

)
+
(
Ys − Ys′

)2]
=
(
ms +ms′ − 2 δss′ ms)

)
+ E

[(
msXs −ms′ Xs′

)2]
.
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2.1 Non-stationary theoretical variogram

In order to characterize the relationship between the variograms Z and Y and to deter-

mine adequate weights or correction terms, we developed conditional and non-conditional

expectations related to
(
Zs

ms
− Zs′

ms′

)
using Eq. A2,

E
[
Zs

ms

− Zs′

ms′

∣∣∣∣X] =
1

ms

E[Zs|Xs]−
1

ms′
E[Zs′ |Xs′ ] = Xs −Xs′

E
[
Zs

ms

− Zs′

ms′

]
= 1− 1 = 0. (A5)

The expression of the non-conditional order-2 moment is derived from Eq. A2 and A3,

E

[(
Zs

ms

− Zs′

ms′

)2 ∣∣∣∣X
]

=
1

m2
s

E
[
(Zs)

2
∣∣Xs

]
+

1

m2
s′

E
[
(Zs′)

2
∣∣Xs′

]
−

2 E
[
Zs Zs′

∣∣X]
ms ms′

=
Xs

ms

+
Xs′

ms′
− 2δss′

Xs

ms

+
(
Xs −Xs′

)2
.

E

[(
Zs

ms

− Zs′

ms′

)2
]

= E

[
Xs

ms

+
Xs′

ms′
− 2δss′

Xs

ms

+
(
Xs −Xs′

)2]

=

(
ms +ms′

ms ms′

)
− 2 δss′

1

ms

+ 2 γX(ss′).

1

2
E

[(
Zs

ms

− Zs′

ms′

)2
]

=
1

2

(
ms +ms′

ms ms′

)
− δss′

1

ms

+ γX(ss′). (A6)

Let γZ/m(ss′) denote the non-stationary theoretical variogram corresponding to the ran-

dom field
(
Zs/ms

)
, we get for s 6= s′ the relationship :

γX(ss′) = γZ/m(ss′)− 1

2

(
ms +ms′

ms ms′

)
, (A7)
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we can check for s = s′ that Eq. A6 reduces to γX(0) = γZ(0) = 0.

Furthermore the conditionnal variance and its expectation for s 6= s′ are,

Var
[
Zs

ms

− Zs′

ms′

∣∣∣∣X] = E
[(

Zs

ms

− Zs′

ms′

)2 ∣∣∣∣X
]
−E2

[
Zs

ms

− Zs′

ms′

∣∣∣∣X
]

=
Xs

ms

+
Xs′

ms′
+
(
Xs −Xs′

)2 − (Xs −Xs′
)2

=
Xs

ms

+
Xs′

ms′
.

E
[

Var
[
Zs

ms

− Zs′

ms′

∣∣∣∣X]
]

= E
[
Xs

ms

+
Xs′

ms′

]
=

(
ms +ms′

ms ms′

)
. (A8)

.

2.2 Estimation of γX(h)

Let Zs be the values observed at a given cell s. The expectation of the modified sample

variogram of X can be derived from the weight system from Eq. A8 and the minus-one

bias-correction term from equation Eq. A7,

γ∗X(h) =
1

2N(h)

∑
s,s′

(
ms +ms′

ms ms′

(
Zs

ms

− Zs′

ms′

)2

− 1

)
I
dss′∼h

, (A9)

where I
dss′
∼ h is the indicator function of pairs (ss′) whose distance is close to h, where

N(h) =
∑

ss′
ms+ms′
ms ms′

I
dss′∼h

is a normalizing constant.

The sample variogram estimate γ∗X(h) can be difficult to obtain when computed from an

area where few data are expected. For example, in our case study of the auks in the Bay of
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Biscay, when the mean is inferior to 0.5 there were only 215 sightings and the total length

of the transect was 2500 km. In such a case, the expression

(
Zs

ms
− Zs′

ms′
.

)
gives a strong

weight to the variogram values when computed in this area where few data are expected. So

a simpler estimate of γX can be proposed on subareas where the mean ms can be assumed

constant or when the empirical variogram estimate γ∗Z(h) is restricted to pairs of sampled

sites with the same mean ms ,

γ∗X(h) =
1

m2

[
γ∗Z(h)−m

]
, (A10)

where m is the locally constant value of ms.
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Appendix 2

Variogram models

We present here the theoretical variogram formulas used in this study. They are standard

variogram models and more detailed explanations can be found in Cressie (1993), Wacker-

nagel (2003) and Webster and Oliver (2007). We deal with them in their isotropic form, so

that the lag vector |h| becomes a schalar measure of distance only, h in any direction.

Here, γ(h) is the theoretical variogram at distance h, the nugget parameter is c0, the sill

parameter is c1 and a is the range. There are two main families of variogram model, one

represents bounded variation while the other unbounded variation.

Spherical model. This model is a bounded variogram, so that the spherical model may

reach its sill at a finite lag distance, the range and the semi-variance has a maximum (i.e.

the sill) which is a priori the variance of the process. The value of the range corresponds to

the average diameter of the patches. This makes the range values easily interpretable when

investigating the spatial structure of a species’ distribution. This model is well-suited to

model spatial processes generating regular patches. A spherical model (c0, c1, a) is defined
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by

γ(h) =


c1
[
3h
2a
− 1

2
h
a

]
for h <= a1

c0 + c1 for h > a1.

(A11)

The following models are unbounded variogram models meaning that the variance is in-

finite and the sill is approached only asymptotically and so they do not have a finite range.

In this case the range values might be more difficult to interpret when analysing a species

'distribution. These are the variograms of transition processes and are well-suited to model

very broad-scales structures generated by environmental gradients (i.e., trends) when applied

to ecological data.

Exponential model. The exponential model has a near linear behaviour when ap-

proaching distance zero (i.e. origin of the variogram) and may be well-suited to model pro-

cesses with irregular patches and very broad-scale variation. An exponential model (a, c0, c1)

is defined by

γ(h) = c0 + c1

{
1− exp

(
−h
a

)}
. (A12)
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Stable model. This model has a reverse curvature when approaching the origin, the

curvature varies with α. A stable model (c0, c1, a, α) is defined by

γ(h) = c0 + c1

{
1− exp

(
−h
a

)α}
. (A13)

Bessel model. This model might be used to model a variogram that fluctuates more or

less periodically, rather than increasing monotically. This model might be useful to model

processes with periodicity. The user of this function should ask what evidence there is of

periodicity in the ecological process being investigated. If there is none and the apparent

periodicity or hole is weak, then the user should not try to force a periodic model on the

variogram. A Bessel model (c0, c1, a, wj) is defined by

γ(h) = c0 + c1

{
1− exp

(
−h
a

)
J0

(
−2πh

wj

)}
, (A14)

where J0 is the Bessel function of the first kind and wj is a distance parameter corresponding

roughly to the wavelength.

The following models are multi-scale models that combine two models and they are the

ones used to fit the sample variograms for simulations A, B and C.

Two-scale variogram model with a Bessel and a spherical model used in sim-
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ulation A

γ(h) = c0 + cfine

{
1− exp

(
− h

afine

)
J0

(
−2πh

wj

)}
+ cbroad

[
3h

2abroad
− 1

2

h

abroad

]
. (A15)

Two-scale variogram model with a spherical and an exponential model used

in simulation B

γ(h) = c0 + cfine

[
3h

2afine
− 1

2

h

afine

]
+ cbroad

{
1− exp

(
− h

abroad

)}
. (A16)

Two-scale variogram model with an exponential and a spherical model used

in simulation C

γ(h) = c0 + cfine

{
1− exp

(
− h

afine

)}
+ cbroad

[
3h

2abroad
− 1

2

h

abroad

]
. (A17)

References

Cressie, N. A. C. 1993. Statistics for spatial data. Revised edition. Wiley Inter-Science,

New York.

Wackernagel, H. 2003. Multivariate Geostatistics: An introduction with application. 3 rd

edition. Springer-Verlag, Berlin.

Webster, R. and M. A. Oliver. 2007. Geostatistics for Environmental Scientists. John Wiley

Sons Ltd, Chichester, England.

4



Appendix 3

Estimation of Y by multiplicative Poisson kriging

This appendix details the derivation of multiplicative Poisson kriging. The aim of the multi-

plicative Poisson kriging is to map the non-stationary latent density of sightings of animals.

A comparison between Poisson kriging (Monestiez et al. 2006) and the multiplicative Poisson

kriging presented here can be found in Bellier et al. (2010).

The spatial interpolation of Y is implemented through ordinary kriging (OK) at any site

sp ∈ D. This kriging is a linear predictor of Ysp combining the observed data Zs weighted

by the drift terms ms and msp ,

Y ∗sp =
n∑

s=1

λs
msp Zs

ms

. (A18)

The unbiasedness of Y ∗sp leads to the usual condition on values λs’s :

n∑
s=1

λs = 1. (A19)

The expression of the Mean Square Prediction Error (MSPE) can also be derived from

the kriging estimate expression,
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E
[
(Y ∗sp − Ysp)2

]
= m2

sp

(
σ2
X +

n∑
s=1

λ2s
ms

+
n∑

s=1

n∑
s′=1

λsλ
′
s Css′ − 2

n∑
s=1

λsCssp

)
. (A20)

By minimizing this expression C20 on λi’s subject to the unbiasedness constraint, we

obtain the following kriging system of (n+ 1) equations where µ is the Lagrange multiplier.
n∑

s′=1

λs′Css′ +
λs
ms

+ µ = Cssp for s = 1, . . . , n

n∑
s=1

λs = 1.

(A21)

The kriging system expressed with covariance is preferably used for computation when

both variogram and covariance exist. The kriging system may be expressed from the vari-

ogram using the usual relation Css′ = σ2
X − γX(ss′).

The expression of the prediction variance resulting from this kriging system reduces to :

Var(Y ∗sp − Ysp) = m2
sp

(
σ2
X −

n∑
s=1

λsCssp − µ
)
. (A22)

It can be easily shown that the kriging of Xsp defined as X∗sp =
∑n

s=1 λs
Zs

ms
gives the

same solutions in λ’s and µ, so kriging of Y ∗sp or X∗sp become equivalent using the relation-

ship Y ∗sp = msp X
∗
sp .
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Appendix 4

Segmented line regression model

We used the segmented line regression (Eq. 6 in the main text) to model the non-constant

mean of the population of auks in the Bay of Biscay. The estimated parameters are given in

the Table A1 below. The standard errors in bracket were obtained by parametric bootstrap.

Table A1: Estimated parameters of the segmented line (Eq. 6) and their standard errors.

α B1 B2 B3 w1 w2

December 2001 2.49 (1.18) 41.65 (12.50) 55.29 (6.97) 179.08 ( 27.09) 0.56 (0.28) 0.04 (0.05)

January 2002 3.90 (1.29) 42.27 (10.37) 57.28 (3.40) 182.77 (20.65) 0.86 (0.35) 0.05 (0.05)

February 2002 3.97 (1.33) 41.10 (11.50) 57.07 (3.40) 181.76 (22.87) 0.83 (0.29) 0.05 (0.05)

Mars 2002 5.55 (2.20) 41.00 (12.45) 56.64 (5.72) 181.45 (23.84) 1.23 (0.48) 0.09 (0.09)
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Figure A1: Density of auk sightings as a function of the distance to the coast (dots) estimated

by fitting a segmented line regression model (i.e. estimation of the spatial trend m).
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Appendix 5

Multi-scale variogram and multi-scale map of the spatial

distribution of the auks in the Bay of Biscay in

November 2001
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Figure A2: Two-scale variogram models fitted to sample variograms of X (i.e. corrected var-

iograms of Z) for the survey of November 2001: sample variogram of X (dotted-and-dashed

line) ; multi-scale variogram model (solid line) ; variogram models used when composing the

nested variogram model (dotted lines). The x-axis represents the distance in km while the

y-axis corresponds to the semi-variance. The approximate AIC value for the spherical model

was 420.73, for the single wave-model was 570.86, and for the two-scale model was 401.23.

The estimated parameters for the two-scale model (with their associated standard error

given in brackets) were cwave = 1.6(1.52), concwave = 3.3(1.18), a1−wave = 2.5(0.89), a2−wave =

5(1.17), csph = 3.5(1.2), asph = 120(42.8).
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Figure A3: Left panel: map of the auk sighting expectations (expected sighting density

per km) obtained by multi-scale kriging for the survey of November 2001. Centre panel:

map of broad-scale auk sighting distributions. Right panel: map of fine-scale auk sighting

distributions. A 2-km resolution prediction grid was defined for all maps. All data points

were used in the kriging system for spatial prediction.
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