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Supporting Information683

Figures684

Figure S.1: Normalized sampling time and false negative given normalized stopping time ts

with the probability of sampling error ϵ = 0.1 (a-c), and ϵ = 0.3 (d-f). For each individual

distribution scenarios, the numerical average (lines) and its theoretical value (dashed) are

provided. The shaded area are between 5 and 95 percentiles of a 105-time numerical simula-

tion. FTS represents the fixed-time survey. The scales of surveys are are ν(W ) = 4km×4km,

ν(M) = 2−3km×2−3km, ν(S) = 2−6km×2−6km. The parameters for the points generations

are the same as in Fig. A.1.
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Figure S.2: Normalized sampling time and false negative given normalized stopping time ts

with the probability of sampling error ϵ = 0.1 (a-c), and ϵ = 0.3 (d-f). For each individual

distribution scenarios, the numerical average (lines) and its theoretical value (dashed) are

provided. The shaded area are between 5 and 95 percentiles of a 105-time numerical simula-

tion. FTS represents the fixed-time survey. The scales of surveys are are ν(W ) = 4km×4km,

ν(M) = 2−4km×2−4km, ν(S) = 2−6km×2−6km. The parameters for the points generations

are the same as in Fig. A.1.
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Figure S.3: Normalized sampling time and false negative given normalized stopping time ts

with the probability of sampling error ϵ = 0.1 (a-c), and ϵ = 0.3 (d-f). For each individual

distribution scenarios, the numerical average (lines) and its theoretical value (dashed) are

provided. The shaded area are between 5 and 95 percentiles of a 105-time numerical simula-

tion. FTS represents the fixed-time survey. The scales of surveys are are ν(W ) = 4km×4km,

ν(M) = 2−3km×2−3km, ν(S) = 2−5km×2−5km. The parameters for the points generations

are the same as in Fig. A.1.
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Figure S.4: Normalized sampling time, false negative, and false positive given normal-

ized stopping time ts with the probability of sampling error ϵ = 0.1. For each individual

distribution scenarios, the numerical average (lines) and its theoretical value (dashed) are

provided. The shaded area are between 5 and 95 percentiles of a 105-time numerical simula-

tion. FTS represents the fixed-time survey. The scales of surveys are are ν(W ) = 4km×4km,

ν(M) = 2−4km× 2−4km, ν(S) = 2−6km× 2−6km. The intensity of false positive is λfp = 10.

The parameters for the points generations are the same as in Fig. A.1.
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Figure S.5: Normalized sampling time, false negative, and false positive given normal-

ized stopping time ts with the probability of sampling error ϵ = 0.1. For each individual

distribution scenarios, the numerical average (lines) and its theoretical value (dashed) are

provided. The shaded area are between 5 and 95 percentiles of a 105-time numerical simula-

tion. FTS represents the fixed-time survey. The scales of surveys are are ν(W ) = 4km×4km,

ν(M) = 2−3km× 2−3km, ν(S) = 2−5km× 2−5km. The intensity of false positive is λfp = 10.

The parameters for the points generations are the same as in Fig. A.1.

A Point generations685

Individual distributions686

The random and clustering individual distributions are generated by applying the theory of687

spatial point processes that accommodate stochasticity in individual distributions in region688

W . Specifically, random individual distributions are generated by a homogeneous Poisson689

process, and a Thomas process, widely applied to characterize intraspecific aggregation pat-690
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terns (Fig. A.1).691

In the homogeneous Poisson process, provided the intensity λpo, the number of individuals692

X in a given region R with area ν(R) follows the Poisson distribution with intensity λpoν(R)693

P (X = k) =
(λpoν(R))k

k!
e−λpoν(R). (S.1)

The Thomas process is an extension of the homogeneous Poisson process and it is gen-694

erated by the following three steps:695

1. Parents locations are determined according to the homogeneous Poisson process with696

a parent intensity λp.697

2. Each parent produces a random number of daughters with an average c that follows698

the Poisson distribution.699

3. The generated daughters are placed around their parents independently with an isotropic700

bivariate Gaussian distribution with the variance σ2
th, and the parents are removed.701

The intensity of the Thomas process is defined [1]702

λth = c̄λp, (S.2)

In the analysis, we set λth = λpo to satisfy the average numbers in a given area are the same703

under both individual distributions.704

The zero probability of the Thomas process in the mapping unit M is [36]705

P (Y = 0) = exp

(
−λp

∫

R2

(
1− exp

(
−c̄

∫

M

1

2πσ2
exp

(
−∥x− y∥2

2σ2

)
dx

))
dy

)
. (S.3)

For the zero probability P (X(ts) = 0) where the subregion Sts ⊂ M is sampled until time706

ts with sampling error ϵ, the power of second exponential of Eq. (S.3) is described as707
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Figure A.1: Examples of point patterns based on the (a) homogeneous Poisson process
(random); and (b) Thomas (clustered) process. Parameter values are λpo = 100 for random
process and λth = 5, c = 20, σth = 0.1 for clustered process.

−c̄(1− ϵ)
∫
Sts

1
2πσ2 exp(−∥x−y∥2

2σ2 )dx.708
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B Derivations of sampling probabilities712

Here we derive each probability required for Eqs. (1a), (1b). Later, we will show the same713

manner will immediately follow in the case of clustering individual distributions.714

When individuals are distributed randomly (i.e., via homogeneous Poisson distribution),715

the probability of existing 0 individual in a mapping unit with area ν(M) is P (Y = 0) =716

e−λpoν(M) by Eq. (S.1). The probability of miss-detection conditioned on the existence717

of individual(s) in this case is directly obtained by calculating (i) the probability of mis-718
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detection given individual encounter (hitting), and (ii) encounter no species (non-hitting)719

until time ts given individual existing in a mapping unit as follows720

Ppo(X(ts) = 0 | Y > 0) =
e−λpoν(S)ts

1− e−λpoν(M)
︸ ︷︷ ︸

P (hitting)

(ϵλpoν(S)ts +
(ϵλpoν(S)ts)2

2!
+

(ϵλpoν(S)ts)3

3!
+ · · · )

︸ ︷︷ ︸
P (non−detection)

+1− 1− e−λpoν(S)ts

1− e−λpoν(M)
︸ ︷︷ ︸

P (non−hitting)

,

=
e−λpoν(S)ts(1−ϵ) − e−λpoν(M)

1− e−λpoν(M)
. (S.4)

Therefore, the probability of false negative can be reduced more efficiently by increasing the

sampling stopping time ts when the intensity λpo and sampling unit ν(S) are larger and

detection error ϵ is smaller. Using Eq. (S.4), we have the followings:

P (X(ts) > 0 | Y > 0) =
1− e−λpoν(S)ts(1−ϵ)

1− e−λpoν(M)
, (S.5a)

P (X(ts) = 0, Y > 0) = e−λpoν(S)ts(1−ϵ) − e−λpoν(M), (S.5b)

P (X(ts) > 0, Y > 0) = 1− e−λpoν(S)ts(1−ϵ), (S.5c)

where Eq. (S.5b) is the false negative probability and Eq. (S.5c) gives the occupancy721

probability of the presence-absence map. Let P (t) be the probability that a state X(t) = 0722

switches to X(t) > 0 at time t, and it is via Eq. (S.5c),723

P (t) = P (X(t) > 0, Y > 0)− P (X(t− 1) > 0, Y > 0),

= e−λpoν(S)(t−1)(1−ϵ) − e−λpoν(S)t(1−ϵ). (S.6)

Then, the average time of this event has the form E[t] =
∑ts

t=1 tP
′(t) where, P ′(t) is the724

normalized probability of P (t) with any stopping time ts obtained by dividing by
∑ts

1 P (t) =725
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P (X(ts) > 0, Y > 0) so as to satisfy
∑ts

0 P ′(t) = 1. Thus this is described726

E[t] =
1

P (X(ts) > 0, Y > 0)
(
ts−1∑

t=0

e−λpoν(S)t(1−ϵ) − tse
−λpoν(S)tstop(1−ϵ)),

=
1

1− e−λpoν(S)ts(1−ϵ)
(
1− e−λpoν(S)ts(1−ϵ)

1− e−λpoν(s)(1−ϵ)
− tse

−λpoν(S)ts(1−ϵ)). (S.7)

Substituting P (Y = 0), Eqs. (S.5c), (S.5b), and (S.7) into Eq. (1b), we have the simpler727

form:728

tposamp = NM

ts−1∑

t=0

Ppo(X(t) = 0),

= NM
1− e−λpoν(S)ts(1−ϵ)

1− e−λpoν(S)(1−ϵ)
. (S.8)

This suggests intuitive characteristics of ecological survey: the total sampling time is propor-729

tional to the number of mapping unit NM , the effect of a mapping resolution M . As in the730

case of Eq. (S.4), the sampling time is reduced more efficiently by increment the sampling731

stopping time ts when the factors λpo, ν(S), and 1− ϵ are larger.732

C Small limit of mapping units733

When the mapping unit becomes very small (ν(M) ≪ 1; hence the sampling unit S does too)

we can discuss the asymptotic behaviors. This is possible when the sampling devices offer

highly resolved spatial images. Provided these conditions, it is straightforward, by expanding

the exponential terms of corresponding equations above, to show that the sampling time and
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probability of false negative asymptotically converge to the same values. These are

lim
M→0

tdistsamp = NM ts, (S.9a)

lim
M→0

Pdist(X(t) = 0, Y > 0) = 0. (S.9b)

Note Eqs. (S.9) also hold for the limit of individual intensities λpo → 0 or λth → 0 (i.e.,734

sparse populations). Intuitively speaking, this limit emerges when the mapping unit becomes735

sufficiently small that each mapping unit holds at most one individual. In this limit, spatial736

structure does not matter at the scale of a sampling resolution.737

D Sampling under the possibility of false positive de-738

tection739

When there is possibility for false positive detection, it is still possible to discuss the sampling740

performance under our framework. However, the cause of false positive (e.g., random noise,741

miss classification, etc.) may be much diverse than the false positive detection where its742

definition is straightforward (i.e., miss-detection). Here we demonstrate the extension and743

provide some theoretical and numerical results.744

D.1 Extended model745

To consider a possibility of false positive detection, we introduce the new probability variables746

X1 and X2, where X1 corresponds to X in the above discussion and X2 is the indicator of747

false positive. These are mutually exclusive; hence X1 > 0 and X2 > 0 do not occur748
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simultaneously. Then, Eq. (1b) in the main text becomes749

Tsamp = NM

⎡

⎣ts{P (X(ts) = 0, Y = 0) + P (X(ts) = 0, Y > 0)︸ ︷︷ ︸
no detection

}

+ E1[t]P (X1(ts) > 0, X2(ts) = 0, Y > 0)︸ ︷︷ ︸
detection

+ E2[t]P (X1(ts) = 0, X2(ts) > 0, Y = 0)︸ ︷︷ ︸
false detection within an empty patch

,

+ E3[t] P (X1(ts) = 0, X2(ts) > 0, Y > 0)︸ ︷︷ ︸
false detection within a patch with individual(s)

⎤

⎥⎦ , (S.10)

where, X(ts) = 0 is a concise description of X1(ts) = 0 and X2(ts) = 0, E1[t], E2[t], and750

E3[t] are the average times for a detection, to cause a false positive within an empty patch,751

to cause a false positive within a patch with individual(s). Note false positive detection is752

either in an empty patch or a patch with individuals. These influence differently on the753

total sampling time. Also, our theory discussed in the main text is immediately recovered754

by turning off the possibility of false positive detection and set (i.e., P (X2(t) = 0) = 1) and755

replacing the notation X1 with X.756

With the new probability variable, Eq. (S.6) is described as:757

P1(t) = P (X1(t) > 0, X2(t) = 0, Y > 0)− P (X1(t− 1) > 0, X2(t) = 0, Y > 0). (S.11)

Similarly, the probability of switching from no false positive to false positive in an empty

patch P2(t) and a patch with individual(s) P3(t) at time t are respectively described as

follows:

P2(t) = P (X1(t) = 0, X2(t) > 0, Y = 0)− P (X1(t) = 0, X2(t− 1) > 0, Y = 0), (S.12a)

P3(t) = P (X1(t) = 0, X2(t) > 0, Y > 0)− P (X1(t) = 0, X2(t− 1) > 0, Y > 0). (S.12b)
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The average time Ei[t] is calculated using these probabilities as:758

Ei[t] =

(
ts∑

t=1

Pi(t)

)−1 ts∑

t=1

Pi(t)t, (S.13)

where the first summation is the normalization factor.759

D.2 Examples760

Here, we perform some numerical and theoretical calculations of the extended model. Due761

to its highly complex nature, we phenomenologically model that probability of false positive762

via an ordinary assumption in e.g., queueing theory and birth-death process [1]. That is,763

we assume that the number of false positive detection after sampling a certain region ν(S)t764

at time t follows a Poisson distribution with an intensity λfp, Po(λfpν(S)t). This indicates765

false positive detection occur independently of individual distributions, and yields a great766

simplification as we can describe e.g., the probability of detection767

P (X1(t) > 0, X2(t) = 0, Y > 0) = P (X1(t) > 0, Y > 0)P (X2(t) = 0). (S.14)

As X1 corresponds to X in the main text, we can use the same probabilities aside from

probabilities ofX2. As the number of false positive detection follows the Poisson distribution,

we have the followings

P (X2(t) = 0) = exp(−λfpν(S)t), (S.15a)

P (X2(t) > 0) = 1− exp(−λfpν(S)t). (S.15b)

Using these probabilities, we calculate theoretically and numerically in three scenarios of768

mapping and sampling units as in the main text (Figs. ??-S.5). These results demonstrate769
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that the theory developed in the main text is easy to extend, and assessment of the false770

positive probability P (X2(t)) will further improve quality of the sampled data.771
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