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Appendix 1. Collection locations and sample sizes for laboratory Tmax experiments. 
 
Table A1. Environmental characteristics of eight collection sites and sample sizes of Tmax assays 
for four species (historical elevation affinity in parentheses). 
 

Species 
Elevation 

(masl) 
Strahler 

order 
Water temperature (°C) A   Number of individuals 

June August   June August 
N. leuciodus (low) 261 5 21.3 n/a  17 0 

 549 5 17.9 18.4  14 18 
N. rubricroceus (high) 484 3 18.9 19.1  15 18 

 813 3 16.3 16.9  16 17 
E. rufilineatum (low) 310 6 24.6 25.3  16 16 

 469 4 19.8 21.5  16 17 
E. chlorobranchium (high) 513 5 22.7 24.4  17 18 
  549 5 16.9 18   17 18 
A Measured at midday on day of collection. 

 
 
  



Appendix 2. Multi-model projections of air-water temperature relationships and extreme heat 
events. 
 
Table A2. Ten AT, landscape, and hydrographic variables used to model and map daily 
maximum WTs (i.e., extreme heat events, Textreme) in the upper Tennessee River system. 
 

Predictor variable (units) Min. Median Max 
Maximum daily AT (5-day lag; °C) 14.6 26.7 32.5 
Upstream drainage area (km2) 0.0009 94.8 9259.6 
Mean sand content (% of dry mass) A 0 31.1 52.7 
Mean soil organic matter content (% of dry mass) A 0 0.69 2.65 
Mean soil permeability (cm/hour) A 0 7.99 31.23 
Mean depth to bedrock (cm) A 0 114.4 152.4 
Mean seasonal water table depth (cm) A 0 175.7 182.9 
Mean clay content (% of dry mass) A 0 26.1 59.2 
Mean composite topographic index A 154.2 292.4 935.1 
Mean reach elevation (meters a.s.l.) 193.3 598.2 1747.7 
A Mean for upstream drainage area.       

 
  



Table A3. Parameterizations for each of three statistical algorithms used for landscape-AT-WT 
models. Asterisks indicate the parameterization used in final model. 
 

Generalized linear modeling (GLM):  
- R library: base. 
- Gaussian family. 
- Log10 transformed catchment area to normalize the right-skewed distribution. 
- No interaction terms between predictor variables. 
- No variable selection or reduction procedure. 
- Compared models with differing response shapes: linear versus polynomial* 
 
Generalized additive modeling (GAM): 
- R library: gam. 
- Gaussian family. 
- Log10 transformed catchment area. 
- Smoother is a cubic-spline. 
- Compared models with differing degrees of smoothing: 2 versus 4* versus 6 versus 10. 
 
Random forests (RF): 
- R library: randomForest. 
- Maximum number of trees was set to 1000. 
- Compared models with differing numbers of predictor variables randomly sampled as 
candidates at each split: 2 variables* versus 4 variables versus 6 variables. 

  



Table A4. Four general circulation models (GCMs) used to project extreme heat events for the 
future (2071 to 2100) time period. 
 

GCM Institution 
ACCESS1-0  Commonwealth Scientific and Industrial Research Organization and Bureau of 

Meteorology, Australia  
CCSM4  National Center for Atmospheric Research, USA  
CNRM-CM5  Centre National de Recherches Meteorologiques/Centre Europeen de Recherche et 

Formation Avancees en Calcul Scientifique, France  
INM-CM4  Institute for Numerical Mathematics, Russia  

  



Figure A1. Diagram of landscape-air temperature-water temperature modeling (Step B) and 
stochastic weather generation (Step C). 

  



Figure A2. Locations of 153 WT monitoring stations in southern Appalachian Mountains. 
 

 
  



Figure A3. Locations of National Oceanic and Atmospheric Administration (NOAA) weather 
stations used to spatially interpolate daily ATs to WT monitoring stations and 25,379 reaches in 
the upper Tennessee River system. 
 

 
  



Appendix 3. Multi-model environmental niche modeling. 
 

We modeled species’ occurrence probabilities using linear and non-linear regression 
based techniques (generalized linear modeling and generalized additive modeling, respectively) 
and a machine learning technique (random forests). Because these statistical algorithms require 
both presences and absences and the IchthyMaps dataset does not include true absence reaches 
for each species, we selected pseudoabsences at random from reaches in which one or more other 
non-game fish species (but not the focal species) was present in the IchthyMaps dataset to 
increase the likelihood of selecting true absences (Huang and Frimpong 2015). We generated ten 
pseudoabsence datasets where pseudoabsences were equal in number to occurrence records (i.e., 
50% prevalence) (Figure A4). We implemented modeling using an internal and external split 
sample cross validation procedure (Guisan et al. 2017; Figure A4). We split each of the ten 
presence-pseudoabsence datasets into an 80% external training dataset and a 20% external 
testing dataset, while maintaining 50% prevalence for both training and testing datasets. We 
further split each external training dataset into a 75% internal training dataset and a 25% internal 
testing dataset. This internal splitting procedure also maintained 50% prevalence and was 
repeated ten times for each of the ten datasets, producing 100 datasets per species. Next, we used 
each of the three statistical algorithms to fit models to each internal training dataset and to 
predict occurrence probabilities for the paired internal testing dataset, resulting in 300 models per 
species. We explored several parameterizations for each statistical algorithm (Table A6). An 
optimal threshold occurrence probability was identified where sensitivity and specificity are 
equal, thus minimizing the frequencies of both false absences and false positives (Guisan et al. 
2017). We used fitted models to predict probabilities of occurrence for the paired external testing 
datasets that were then converted to presence or absence according to each model run’s optimal 
threshold. We assessed model performance using area under the curve (AUC) of the receiver 
operator characteristic for the internal validation and classification success, sensitivity, and 
specificity for the external validation. We projected the ensemble of models to all 25,379 reaches 
in the upper Tennessee River system for each species, and occurrence probability was evaluated 
as a committee average (Guisan et al. 2017). We implemented all ENM analyses in the R 
statistical environment (R Core Team 2017). 
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Table A5. Ten landscape and hydrographic variables used in ENMs to model and map 
occurrence probabilities of four species in the upper Tennessee River system. 
 

Predictor variable (units) Min. Median Max 
Upstream drainage area (km2) 0.0009 94.8 9259.6 
Mean sand content (% of dry mass) A 0 31.1 52.7 
Mean soil organic matter content (% of dry mass) A 0 0.69 2.65 
Mean soil permeability (cm/hour) A 0 7.99 31.23 
Mean depth to bedrock (cm) A 0 114.4 152.4 
Mean seasonal water table depth (cm) A 0 175.7 182.9 
Mean clay content (% of dry mass) A 0 26.1 59.2 
Mean composite topographic index A 154.2 292.4 935.1 
Reach slope (meters/kilometer) 0.00001 0.0420175 3.02 
Mean reach elevation (meters a.s.l.) 193.3 598.2 1747.7 
A Mean for upstream drainage area.       

  



Table A6. Parameterizations for each of three statistical algorithms used for ENMs. Asterisks 
indicate the parameterization used in final ENMs. 
 

Generalized linear modeling (GLM):  
- R library: base. 
- Binomial family with logit link function. 
- Log10 transformed catchment area to normalize the right-skewed distribution. 
- No interaction terms between predictor variables. 
- No variable selection or reduction procedure. 
- Compared models with differing response shapes: linear versus polynomial* 
 
Generalized additive modeling (GAM): 
- R library: gam. 
- Binomial family with logit link function. 
- Log10 transformed catchment area. 
- Smoother is a cubic-spline. 
- Compared models with differing degrees of smoothing: 2 versus 4* versus 6 versus 10. 
 
Random forests (RF): 
- R library: randomForest. 
- Maximum number of trees was set to 1000. 
- Compared models with differing numbers of predictor variables randomly sampled as 
candidates at each split: 2 variables* versus 4 variables versus 6 variables. 

  



Figure A4. Schematic depiction of ENM procedure. 
 



Appendix 4. Supplementary results tables and figures. 1 
 2 

Table A7. Performance and output of ENMs across three algorithms and four species. 3 
 4 

Species 

Historical 
elevation 
affinity 

Number of 
IchthyMaps 

records Algorithm 

ENM performance 

  

ENM output 

AUC Acc. Sens. Spec. Occup. Elev5 Elev50 Elev95 
Notropis leuciodus moderate 653 GLM 0.69 0.62 0.62 0.62  0.32 279 664 1,240 

   GAM 0.72 0.66 0.66 0.66  0.31 332 675 1,163 
   RF 0.73 0.66 0.64 0.68  0.31 333 653 1,176 
             

N. rubricroceus high 290 GLM 0.83 0.75 0.77 0.72  0.23 447 736 1,146 
   GAM 0.83 0.75 0.78 0.72  0.23 448 734 1,131 
   RF 0.81 0.74 0.76 0.72  0.26 443 732 1,146 
             

Etheostoma rufilineatum low 878 GLM 0.75 0.67 0.67 0.68  0.31 219 340 648 
   GAM 0.80 0.71 0.70 0.72  0.26 218 428 719 
   RF 0.79 0.70 0.69 0.71  0.29 225 448 782 
             

E. chlorobranchium high 160 GLM 0.82 0.74 0.73 0.74  0.25 443 823 1,300 
   GAM 0.82 0.74 0.72 0.76  0.24 459 825 1,272 

      RF 0.81 0.74 0.73 0.75   0.24 443 823 1,252 
AUC = area under the curve; Sens. = sensitivity; Spec. = Specificity; Acc. = prediction accuracy 

Occup. = proportion of reaches occupied; Elev5 = 5th percentile of elevation at occupied reaches; Elev50 = 50th percentile; Elev95 = 95th percentile 
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Table A8. Top five linear regression models relating laboratory Tmax to species identity, 6 
laboratory Tacclim, collection location, and collection month. All-subsets selection was based on 7 
Akaike Information Criterion corrected for small sample size (AICc). Top five models are sorted 8 
from best to worst (i.e., low to high AICc). 9 
 10 

Model formula AICc Weight 
Tmax ~ species + Tacclim + location + month + species × Tacclim 714.0 0.645 
Tmax ~ species + Tacclim + location + species × Tacclim 715.2 0.352 
Tmax ~ species + Tacclim + species × Tacclim 726.1 0.001 
Tmax ~ species + Tacclim + month + species × Tacclim 726.2 0.001 
Tmax ~ species + Tacclim + location + month 743.1 0.000 

  11 



Table A9. Coefficients for the best fitting linear regression model from Table A8 predicting 12 
laboratory Tmax. 13 

Parameter Estimate SE t-value P-value 
Intercept 24.818 0.688 36.070 <0.001 
Species - E. rufilineatum 2.226 0.881 2.527 0.012 
Species - N. leuciodus -2.428 0.990 -2.453 0.015 
Species - N. rubricroceus -1.659 0.906 -1.830 0.069 
Tacclim 0.431 0.032 13.306 <0.001 
Month - June 0.267 0.148 1.813 0.071 
Location  - low-elevation -0.479 0.127 -3.773 0.000 
Species - E. rufilineatum × Tacclim -0.139 0.043 -3.268 0.001 
Species - E. leuciodus × Tacclim 0.101 0.049 2.051 0.041 
Species - E. rubricroceus × Tacclim 0.087 0.044 1.969 0.050 

  14 



Table A10. Performance and output of statistical models linking daily WT to daily AT and 15 
landscape predictors. 16 
 17 

Response Algorithm 
Model performance 

RMSE Percent bias NSC 
Daily maximum WT (i.e., Textreme) GLM 1.70 -0.007 0.77 

 GAM 1.59 -0.006 0.80 
 RF 0.85 -0.003 0.95 
     

Daily median WT (i.e., field Tacclim) GLM 1.50 -0.006 0.82 
 GAM 1.34 -0.005 0.86 

  RF 0.68 -0.003 0.96 
RMSE = root mean squared error; NSC = Nash-Sutcliffe coefficient 

18 



Table A11. Top five linear regression models relating future (2071 to 2100) warming tolerance 19 
in historically occupied reaches to species identity, RCP scenario, general circulation model, WT 20 
modeling algorithm, collection location ARR, and collection month ARR. All subsets selection 21 
was based on Akaike Information Criterion corrected for small sample size (AICc). Top five 22 
models are sorted from best to worst (i.e., low to high AICc). 23 

Model formula AICc Weight 
WmTol ~ species + scenario + gcm + algorithm + location + month 2,336,878 1.0 
WmTol ~ species + scenario + gcm + algorithm + month 2,349,991 0.0 
WmTol ~ species + scenario + gcm + algorithm + location 2,351,603 0.0 
WmTol ~ species + gcm + algorithm + location + month 2,356,986 0.0 
WmTol ~ species + scenario + gcm + algorithm 2,364,451 0.0 

  24 



Table A12. Analysis of variance table for the best fitting linear regression model from Table 25 
A11 relating future (2071 to 2100) warming tolerances in historically occupied reaches to 26 
species identity, RCP scenario, general circulation model, WT modeling algorithm, collection 27 
location ARR, and collection month ARR. 28 

Covariate d.f. S.S. M.S. F-value P 
Species identity 3 672,474 224,158 145,307 <0.001 
Emissions scenario 1 31,462 31,462 20,395 <0.001 
GCM 3 159,511 53,170 34,467 <0.001 
WT modeling algorithm 2 2,882,931 1,441,466 934,408 <0.001 
ARR collection location 1 20,418 20,418 13,236 <0.001 
ARR collection month 1 22,953 22,953 14,879 <0.001 
Residuals 714324 1,101,953 2     

  29 



Figure A5. Maps of return intervals for extreme heat events (Textreme) exceeding 18°C, 22°C, 30 
26°C (shown in Figure 4), 30°C, and 34°C across 25,379 reaches in the upper Tennessee River 31 
system under historical climate (left column) and future climate based on low (center column) 32 
and high (right column) emissions scenarios. 33 

 34 
 35 


