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1 Technical details on the simulation model

We simulated metacommunity dynamics using an agent-based resource-consumer model in continuous
space and time. The model can be technically described as a spatiotemporal point-process [1]. The
parameters of the model and their numerical values are summarized in Table S1. In the following,
we describe the model in detail. We use Tophat(a, b; d) to denote the top-hat kernel with integral r
and length-scale `, that is, we have

Tophat(r,`; d) =

¨

r/(π`2) if 0≤ d ≤ `
0 otherwise.

1.1 Resource generation

To generate spatiotemporal variation in resource availability, we assumed that there are P = 4
different habitat patch types that generate a total of R = 24 resource types, so that each patch
generates L = R/P = 6 distinct resource types. The resource particles are generated within circular
patches which are described by their size (radius λ) and quality (per-patch rate of resource production
σ). A patch of type j ∈ {1, . . . , P} centered at location x will generate resource particles of type ( j, k),
where k ∈ {1, . . . , L} according to the kernel Tophat(σ j ,λ j). That is, resource particles appear at rate
σ j uniformly at random within a disk of radius λ j centered at x. Each resource particle is removed
at rate q unless they are consumed by some individual (and hence removed when consumed).

1.2 Species dynamics

In each scenario, we consider a community of S = 24 species which utilize the resource particles
for their survival and reproduction. Each individual can be at two states: resource-deprived or
resource-satiated. When at the satiated state, the individual changes to the deprived state at rate h.
When at the deprived state, the individual can change to the satiated state by consuming a resource
particle from its proximity. If the consumption of resource type is within the niche of species, we
assume that resource consumption can take place at maximum distance θ between the individual
and resource particle. Within this distance, per-particle consumption rate is u. A resource-deprived
individual may die, which takes place at per-individual rate m.

Satiated individuals produce propagules at rate f , which disperse so that they are equally likely
to be deposited anywhere within distance δ from their mother. In other words, a satiated individual
produces a propagules onto a point at distance d at per-unit area rate Tophat( f ,δ; d). The deposited
propagules emerge without delay as new offspring individuals that are in the resource-deprived

1



state. Moreover, we assume that every species has immigration of new offspring individuals outside
the simulation area occurring at rate I per unit area. The new offspring individuals are initially in
the resource-deprived state, and consequently those that immigrate in an area with no resource
production will eventually die and never produce new offspring.

Niche scenarios. Recall that we have P = 4 patch types each producing L = 6 distinct resource
types so that there are S = R = 24 different resource types in total. We consider three different niche
scenarios for the species community:

N1. generalists (no specialization): species of any type can consume any type of resource,

N2. partial specialization: species of type i only consumes resource particles produced by a single
patch type (out of all 4 patch types), i.e., species i consumes any of the L = 6 resources types
produced by patch type j = (i mod P) + 1,

N3. strict specialization: there is a one-to-one correspondence between species the S = 24 species
and the R= 24 resource types so that each species is associated to a unique resource type.

Dispersal scenarios. There are three dispersal scenarios for the propagules:

D1. all species have short dispersal distance, that is, δ = 1,

D2. all species have long dispersal distance, that is, δ = 5, and

D3. half of the species have short dispersal distance (δ = 1) and other half have long dispersal
distance (δ = 5), i.e., species i has short dispersal distance if i mod 2= 0 and long dispersal
distance otherwise.

1.3 Patch dynamics

The landscape structure can be either static or dynamic. In the latter case, new patches of type j are
generated with per-unit-area rate b j and existing patches of type j disappear with per-patch rate d j .
We consider three cases for patch dynamics:

P1. ephemeral short-term patches,

P2. ephemeral long-term patches,

P3. static patches.

For static patches, we have b j = d j = 0, and thus, the habitat structure is determined by the initial
configuration of the system.

Short-term and long-term patches. For short-term ephemeral patches, we set the dissipation rate
d j of all patch types to be d j = 1/4 so that the expected life time of a patch is four time units; note
that this is the same as the attrition parameter h = 1/4 that determines how fast a satiated individual
turns back into the resource-deprived state. For long-term ephemeral patches, we set the dissipation
rate to be d j = 1/20 so that the expected life time of a patch is 20 time units. We set b j such that the
expected density of patches of type j is ρ j .
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Resource generation rate and habitat quality. The resource generation rate of a single resource
( j, k) at location x is given by

ω j(t,x) =
∑

p∈P j(t)

Tophat(σ j ,λ j; dist(p,x))

with P j(t) denoting the locations of patches of type j at time t and dist(p,x) the distance between
the locations p and x in the two-dimensional torus. While ω j(·) may vary over t and x, we ensure
that its expected value (over both time and space) remains constant in all landscapes and scenarios.

To this end, consider patches of type j and any point x in the landscape. Let X be the number of
patch centers of type j within distance λ j of x at time t. The expected value of X is

E[X ] = πλ2
jρ j ,

where ρ j is the density of patch centers. Since each patch within distance λ j from x contributes
to the resource generation rate (of a single resource type) at that particular point by σ j/A, where
A= πλ2

j is the area of the patch, the expected resource generation rate at point x is

E[ω j(t,x)] = E[X ] ·
σ j

πλ2
j

= ρ jσ j .

Note that for ephemeral patches the density ρ j(t) at time t itself is a random variable. However, we
choose the rates b j and d j so that the expectation of ρ j(t) remains constant.

1.4 Environmental gradients

We consider two cases for the large-scale structure in habitat types:

E1. no environmental gradient: all patch types are distributed uniformly at random in the landscape,

E2. environmental gradient: patch types have spatial autocorrelation.

In the first case (E1), when a new patch appears, it is equally likely to appear anywhere in the
landscape. In the second case (E2), the relative location of a new patch of type j ∈ {1,2,3,4} is
sampled according to the density function g j(x , y) on the unit square, where

g1(x , y) = 1+ sin (2πx)

g2(x , y) = 1+ sin (2πx +π)

g3(x , y) = 1+ sin (2πy)

g4(x , y) = 1+ sin (2πy +π) .

The relative locations are then mapped to actual coordinates in the U × U torus, where U is the
parameter controlling landscape size. See Figure S1 for an example of a landscape with a environ-
mental gradient generated according to the above functions. The expected patch density is the same
for each patch type, as we have that

∫

x∈[0,1]2
g j(x)dx= 1.

Figure S4 (environmental gradient) and Figure S5 (no gradient) illustrate how the distribution of
species and resource units is influenced by the environmental gradient scenario.
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Figure S1: A snapshot of a landscape, where the patches have environmental gradients. The coloured
circles are patches and the colours indicate the four different patch types. The green patches are
predominantly on the left-hand side of the landscape, whereas the red patches are on the right. The
orange patches are most likely to occur at the top half of the landscape, whereas blue patches are
likely to appear in the bottom half.

1.5 Landscape structure and heterogeneity in habitat types

We consider different spatial patterns for the habitat structure:

H1. patchy landscape, and

H2. continuous landscape.

Furthermore we vary the two scenarios above even further by assuming either

Q1. uniform patch quality, that is, all patches have the same resource production rate, or

Q2. varying patch quality, that is, there are “source” patches with high resource production rate
and “sink” patches with low resource production rate.

Normalizing the habitat quality. In all scenarios with uniform patch quality (Q1), we fix σ j ·ρ j to
be a constant for each patch type j. That is, the expected rate of resource production per-unit-area is

ω= R
P
∑

j=1

σ jρ j .

For static landscapes (scenario P3), ω remains constant throughout time, but for ephemeral patches
(scenarios P1 or P2) we choose the parameters so that the expectation of ω(t) remains ω for all
t > 0. Note that even though the parameter ω remains the same in all scenarios, the resource
particle generation rate (i.e. the habitat quality) can vary at different spatial locations. Having low
length scale parameter λ j produces patchy environments, whereas high λ j results in more (locally)
homogeneous habitat quality; see Figure S2 and Figure S3 for examples.

Source-sink scenario. In the source-sink scenario (Q2) with both high and low quality patches,
we assume that there are 2P patch types ( j, s), where s ∈ {0, 1} and j ∈ {1, . . . , P} as before. Patches

4



of type ( j, 0) denote source patches of type j, whereas ( j, 1) are sink patches of type j. Both patches
otherwise behave exactly the same as in case Q1 except that source patches have higher resource
production rate than sink patches, that is, σ j,0 > σ j,1. In particular, both produce the same types of
resource particles. In the source-sink scenario, we use σ j(·) as a short-hand for σ j,0(·) +σ j,1(·). The
expected total resource production rates remain the same as in the scenario Q1.
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Figure S2: Examples of the patchy and continuous habitat scenarios. Here there is no environmental
gradient, i.e., the patches follow complete spatial randomness. The top panels illustrate the distri-
bution of a single patch type and the lower panels show the landscape with all P = 4 patch types
plotted. The panels on the left give the patchy case λ = 1. The panels on the right illustrate the
continuous case λ= 5. Each patch type has density 1/20.

1.6 Initial conditions

At time T = 0, the system is initialized as follows. Patches of type j are placed randomly with
density ρ j . If the patches follow an environmental gradient, the patch types are sampled according
to the density functions described in Section 1.4. Otherwise, the patch locations are distributed
uniformly at random in space. Initially, no species is present, i.e., there are no resource-deprived or
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Figure S3: Examples of the patchy and continuous habitat scenarios with environmental gradient.
Otherwise, the four panels are as in Figure S2.

resource-satiated individuals. However, the species populations’ are eventually established by the
fact that resource-deprived individuals immigrate into the landscape at per-unit-area rate I .

2 Details on simulation and data sampling

We simulated the dynamics of the models on a torus of size U × U , with U = 50, for T = 1000 time
units. As earlier work (Smith and Lundholm, 2010; Münkemüller et al., 2012; Tucker et al., 2016;
Clappe et al., 2018) we wished to ignore transient dynamics and our preliminary tests indicated
that T = 1000 time units was sufficient for reaching the stationary state. We assumed that a virtual
ecologist acquired data from the final state of the simulation, placing 100 study plots of size 1× 1
placed into a regular 10× 10, grid, with the distance between the plot centers being D = 2 spatial
units (Figure 1B in the main text and Figure S4D in the supplementary information).

Additionally, the virtual ecologist collected validation data to be used to test the predictive ability

6



of the JSDM approach, acquired using the same design, but plots being located with respect to the
main data (used to fit the JSDM) as white and black squares in a chess board. The researcher scored
the presence-absence of resource-satiated individuals for each species in each study plot, resulting in
the matrix Y, where the columns correspond to species and rows to sampling locations.

Assaying for habitat quality. The virtual ecologist collected data also on habitat quality, separately
for each of the P = 4 habitat types, assaying the resource generation rate σ j as the average over 9
distinct equally spaced points x1, . . . ,x9 placed on a 3× 3 grid within each study plot:

x1 x2 x3

x7 x8 x9

x4

x5
x6

The assayed quality for habitat type j was the average of ω j(t,x1), . . . , ω j(t,x9) at time t = 1000.

Sampling scenarios. We assumed two sampling scenarios for the virtual ecologist:

M1. either the virtual ecologist acquired covariate data on all P = 4 habitat types, or

M2. only on three out of the four habitat types, the remaining one thus being missing covariate.
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Figure S4: An example scenario with two species (red and orange points) and two patch types
(green and blue circles). Here, the red species uses resources of green patches and orange species
uses resources of blue patches. The panels depict a snapshot of a patchy landscape with fast patch
turnover and an environmental gradient. (A) The distribution of resource particles. The × symbols
represent resource particles. (B) The distribution of resource-deprived individuals of both species.
(C) The distribution of resource-satiated individuals of both species. (D) Example of the sampling
design using a 10×10 grid of study plots of size 1×1. The colour of the study plot represents assayed
habitat quality of the green patch type only. The red and green points represent satiated individuals.
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Figure S5: An example scenario similar to Figure S4. Here the patches are static (no patch turnover)
and there is no environmental gradient (both patch types follow complete spatial randomness).
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3 Details on the simulated scenarios

To generate scenarios that span the range of the classic metacommunity paradigms, we considered a
number of parameterizations of the individual-based model and sampling scenario for the virtual
ecologist, presented with the help of the nine choices (C1–C9) that are described conceptually in
Figures 2 and 3 of the main text and summarized numerically in Table S1. These binary choices
C1–C9 determine the scenarios as follows:

C1. environmental gradient: no gradient (E1) vs. gradient (E2),

C2. landscape structure: patchy (H1) vs. continuous (H2),

C3. patch quality: uniform (Q1) vs. varying patch quality (Q2),

C4. temporal habitat structure: ephemerality (P1 or P2) vs. static patches (P3),

C5. patch turnover rate: slow (P1) vs. fast (P2),

C6. specialization: generalists (N1) vs. specialists (N2 or N3),

C7. level of specialization: partial (N2) vs. strict specialists (N3),

C8. dispersal strategy: uniform dispersal (D1 or D2) or variation in dispersal strategy (D3),

C9. dispersal distance: short (D1) vs. long (D2),

The resulting metacommunity scenarios are determined by 9 binary Choices C1-C9 described
above, which yield a total number of 29 = 512 combinations. However, some of the combinations
are not relevant: C5 has an effect only if C4 defines a dynamic landscape, C7 has an effect only if
C6 defines specialization in resource use, and C9 has effect only if C8 determines that all species
follow an identical dispersal scenario. Consequently, the total number of different metacommunity
scenarios is 216. Finally, Choice C10 determines which covariates the virtual ecologist samples:

C10. sampling scenario: all covariates (M1) vs. missing covariates (M2).
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Table S1: Parameters of the simulation model and their default values
Parameter Description value

P Number of patch types 4
L Number of resource types per patch 6
R Number of resource types in total P L = 24
S Number of species 24
U Width and height of the landscape 50

λ Patch radius 1 (patchy) or 5 (continuous)
σ Resource production rate of a patch 4 if scenario is Q1, otherwise

6.4 for source patches
and 1.4 for sink patches

ρ Density of each type of patches 1/20
d Patch death rate (turnover rate) 1/4 (fast) or 1/20 (slow)
b Per-unit-area birth rate of each type of patches d ·ρ
q Death rate of resource particles 1/10

h Transition rate from satiated to hungry state 1/4
θ Maximum distance for resource consumption 1
u Rate of resource consumption 1 if the resource type is within

the species niche, otherwise 0
m Death rate of hungry individuals 1
f Propagule production rate 1
δ Maximal dispersal distance of propagules 1 or 5
I Immigration rate from outside (for each species) 1/100
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4   The output metrics derived from the statistical approaches 

As described in the main manuscript, we considered eighteen output metrics that are derived from five 

different types of analyses: analysis of habitat variation (HAB), beta-diversity indices (BETA), distance-

based variation partitioning (db-VP), distance-based redundancy analysis (db-RDA), and joint species 

distribution modelling (JSDM). Here we give the details on how these output metrics were computed, and 

how we hypothesized them to relate to the simulated metacommunity processes. 

Analysis of habitat variation (HAB) 

Analysis of habitat variation is not a standard approach in community ecology, as the structure of the habitat 

is typically considered as part of the study design, or as explanatory variable, rather than a variable of 

interest itself. However, we decided to include an analysis of habitat variation as it brings direct information 

about habitat structure and thus combining its information with species data can be expected to improve the 

understanding of the assembly processes. 

Output metric O1: Variance in habitat quality (VHAB). We calculated VHAB as standard deviation of habitat 

quality, calculated first separately for each habitat type and then averaged over the habitat types. We 

expected VHAB to increase with the heterogeneity of the landscape, and hence to be larger i) for those 

landscapes that show marked gradients than for those that do not, ii) for patchy landscapes than for 

continuous landscapes, and iii) for landscapes that show variation in patch quality than for those that do not. 

Output metric O2: Distance decay in habitat similarity (DHAB). DHAB was calculated as the slope of the 

linear model where the correlation between habitat qualities measured in two locations was regressed against 

the distance between those two locations, for data obtained for 500 randomly selected pairs of sampling 

locations. As DHAB measures spatial turnover of habitats, we expected it to decrease especially fast (i.e. to 

show higher turnover) for landscapes with a large-scale gradient and for patchy landscapes. 

Beta-diversity indices (BETA) 

We computed three index-based measures partition beta-diversity as defined by Baselga (2010). 

Output metric O3: Sørensen-based multiple-site dissimilarity (𝛽SOR).  Sørensen dissimilarity measures the 

proportion of species shared between two communities and it incorporates both true spatial turnover and 

differences in richness (Baselga, 2010). We thus expected it to be influenced by all processes that generate 

spatial heterogeneity in the communities, especially heterogeneity of the landscape, specialisation in resource 

use, and short-distance dispersal. 

Output metric O4: Simpson-based multiple-site dissimilarity (𝛽SIM). Simpson dissimilarity differs from 

Sørensen dissimilarity by being influenced only by the true spatial turnover and not by the variation in 

species richness (Baselga, 2010). We thus expected it to be influenced otherwise by the same factors as the 

Sørensen dissimilarity except not by whether the landscape is continuous or patchy, as we expected the 

patchiness of the landscape to influence especially variation in species richness (high species richness in 

patches versus low species richness in matrix). 

Output metric O5: Nestedness-resultant multiple-site dissimilarity (𝛽NES).  As its name indicates, 

nestedness dissimilarity evaluates whether communities occurring in different sites are nested, i.e. whether 

species found from one site are a subset of the species found from another site. Nestedness dissimilarity is 

computed as the difference between the Sørensen and Simpson dissimilarities. We expected it to separate 

especially between the patchy and continuous landscapes, as the patchy landscapes can be expected to show 

a strong nestedness structure: species poor communities sampled in the matrix are expected to be subsets of 

those sampled in patches.  

 

Distance-based variation partitioning (db-VP) 

Distance-based variance partitioning decomposes variation in community dissimilarity into components that 

can be explained by environmental and spatial variables. Following Legendre et al. (2005) and Smith and 



Lundholm (2010), we used the vegan R-package (Oksanen et al., 2018) to calculate community dissimilarity 

(applying Bray-Curtis distance) from the occurrence data 𝐘, environmental dissimilarity (applying Euclidean 

distance) from the environmental covariate matrix 𝐗, and spatial distance (applying Euclidean distance) from 

the spatial coordinates. We defined the total explained variance (VABC) as the R2 of the linear regression 

where community dissimilarity was explained by both environmental and spatial distances. The total 

environmental variance (VAB) was the R2 of the linear regression where community dissimilarity was 

explained by environmental dissimilarity, and the total spatial variance (VBC) was the R2 of the linear 

regression where community dissimilarity was explained by spatial distance. To avoid high correlation 

among these three output metrics, we divided the environmental and spatial variances by the total variance. 

Thus, we considered the following three output metrics. 

Output metric O6: Total explained variance (VABC). We expected the total explained variance to be highest 

for communities where variation in community structure can be related to the environmental or spatial 

predictors. That is, for communities that show species sorting due to environmental filtering (high 

specialisation level combined with variation in habitat structure), static landscapes, and species that follow 

short-distance dispersal. 

Output metric O7: Environmental proportion (VAB/VABC). We expected the environmental proportion to be 

high for those communities that show species sorting due to environmental filtering (high specialisation level 

combined with variation in habitat structure) but that do not show spatial structure beyond that explained by 

the environmental predictors. That is, for communities that follow long-distance rather than short-distance 

dispersal. 

Output metric O8: Spatial proportion (VBC/VABC). We expected the spatial proportion to be high for those 

communities that follow short-distance dispersal but do not show species sorting due to environmental 

filtering. 

The R-code by which we computed these measures is given below (the Y matrix includes the community 

data, the X matrix the environmental covariate data, and xy includes the spatial coordinates): 

 

    distY=vegdist(Y) 

    distX=vegdist(X,method="euclidean") 

    distS=vegdist(xy,method="euclidean") 

     

    m=lm(distY~distX+distS) 

    sm=summary(m) 

    VABC=sm$r.squared 

    m=lm(distY~distX) 

    sm=summary(m) 

    VAB=sm$r.squared 

    m=lm(distY~distS) 

    sm=summary(m) 

    VBC=sm$r.squared 

    c(VABC,VAB/VABC,VBC/VABC) 

 

Distance-based redundancy analysis (db-RDA) 

As an alternative method to db-VP, we considered distance-based redundancy analysis (db-RDA). We 

expected these two to give largely similar results, as db-RDA also evaluates the amount of variation in 

community structure that can be explained by environmental and/or spatial predictors. We performed db-

RDA following McArdle and Anderson (2001). To do so, we applied the varpart function of the vegan R-

package, where we included both environmental and spatial predictors. The candidate spatial predictors were 



generated with the listw.candidates function of the adespatial R-package (Dray et al., 2019). The selected 

spatial predictors that were included in the db-RDA were chosen with the listw.select function of the 

adespatial R-package. We defined the following three output metrics.  

Output metric O9: Total explained variance (R2. adj). We hypothesized that R2. adj behaves similarly to 

VABC because they are conceptually similar .  

Output metric O10: Environmental proportion (
X1|X2

R2.adj
). We hypothesized that 

X1|X2

R2.adj
 behaves similarly to 

VAB/VABC because they are conceptually similar.  

Output metric O11: Spatial proportion (
X2|X1

R2.adj
). We hypothesized that 

X2|X1

R2.adj
  behaves similarly to VBC/VABC 

because they are conceptually similar . 

 

The R-code by which we computed these measures is given below (the Y matrix includes the community 

data, the X matrix the environmental covariate data, and xy includes the spatial coordinates):  

    candidates = listw.candidates(xy,nb=c("gab"),weights = c("binary","flin")) 

    modsel.Y = listw.select(Y,candidates, method = "FWD", 

               MEM.autocor = "positive",p.adjust = TRUE) 

    MEM.spe = modsel.Y$best$MEM.select 

    vY=vegdist(Y,method = "bray") 

    vY[is.na(vY)]=0 

    VP = varpart(vY,X,MEM.spe) 

    vp = VP$part$indfract$Adj.R.squared[1:3] 

    c(sum(vp),vp[1]/sum(vp),vp[3]/sum(vp)) 

     

Joint species distribution modelling (JSDM). 

As a model-based method, we used Hierarchical Modelling of Species Communities (Ovaskainen et al., 

2017), which model belongs to the class of Joint Species Distribution Models (Warton et al., 2015). We 

considered the matrix 𝐘 of species occurrences as the response variables, the matrix 𝐗 of habitat qualities as 

the explanatory variables. The coordinates of the sampling locations were used to fit a random effect through 

spatial latent variables (following Ovaskainen et al., 2016). We fitted a probit-regression model, from which 

we generated the following seven output metrics. 

Output metric O12: Predictive power of the model (AUC). We computed the AUC statistic based on two-

fold cross-validation, and thus it measures predictive rather than explanatory power. We expected AUC to 

increase with the predictability of the community, which we expected to increase with the same factors as 

VABC and/or R2. adj (see above). 

Output metric O13: Variance attributed to random effects (VRAND). VRAND was computed as the proportion 

of explained variance (at the level of the linear predictor; see Ovaskainen et al. 2017) attributed to the spatial 

random effect and that cannot thus be attributed to the measured variation in resource availability. As VRAND 

measures the proportion of the variance explained by spatial predictors, we expected it to behave as 

VBC/VABC and/or 
X2|X1

R2.adj
  (see above). 

Output metric O14: Evidence for resource use specialization (RUS). To compute RUS, we computed for 

each species the proportion of explained variance (at the level of the linear predictor; see Ovaskainen et al. 

2017) attributed to each of the resource types, and measured species-specific specialization as the variance 

among these proportions. We then defined RUS as the average specialization over the species. We assumed 

RUS to be highest when the species are specialized in their habitat use, and when the landscape is spatially 

heterogeneous but temporally static so that the species can sort according to their resource use preferences. 



Output metric O15: Proportion of species pairs with positive association (POS). We computed POS as the 

proportion of species that showed a positive residual association supported by at least 95% posterior 

probability. As our agent-based model did not involve any facilitative interactions, we expected positive 

associations to arise only as an artefact due to species responding to a missing environmental covariate. 

Output metric O16: Proportion of species pairs with negative association (NEG). We computed NEG as the 

proportion of species that showed a negative residual association supported by at least 95% posterior 

probability. As the species compete in the agent-based model for the same resources, we expected this to 

generate negative associations, especially for the case where species are specialized and the resource 

distribution in the landscape is heterogeneous. 

Output metric O17: Posterior mean of spatial scale of residual variation (E[α]). We computed E[α] as the 

posterior mean of the spatial scale of the leading spatial latent factor. As E[α] measures the spatial scale at 

which the species communities show turnover not explained by environmental covariates, we expected E[α] 
to be higher for communities where the species followed long-distance dispersal than for communities where 

the species followed short-distance dispersal. 

Output metric O18: Posterior support for spatially structured residual variation (Pr[α > 0]). We computed 

Pr[α > 0] as the posterior probability by which the spatial scale of the leading spatial latent factor is greater 

than zero, i.e. the data shows a spatial signal (in the prior distribution for α, half of the prior-mass was 

assigned to α = 0 and half to α > 0). We expected Pr[α > 0] to be higher for communities where species 

followed long-distance dispersal than for communities that followed short-distance dispersal. 

We sampled the posterior distribution with 1500 MCMC iterations with HMSC-R 3.0 (Tikhonov et al., 

2019), out of which we discarded the first 500 as transient. We note that this amount of sampling is unlikely 

to lead to good MCMC convergence, but we applied it due to computational constrains (note that we needed 

to fit and cross-validate the model for a very large number of replicates). While compromised MCMC 

convergence may influence the absolute performance of the approach, we did not expect it to influence how 

the output metrics relate to the underlying process, except possibly by adding noise. In this sense, the results 

from HMSC analyses are conservative. 

The R-code by which we computed these measures is given below (Y include the community data, XData 

include environmental covariate data, and xy are the spatial coordinates): 

rL.site = HmscRandomLevel(sData =xy) 

m = Hmsc(Y=Y, XData = XData,  distr="probit", 

             studyDesign=studyDesign, ranLevels={list(site=rL.site)}) 

      

m = sampleMcmc(m, samples = 1000, thin=1, 

         adaptNf=400, transient = 500, nChains = 1) 

partition=createPartition(hM=m, nfolds=2, column="site") 

predYCV = computePredictedValues(m, partition=partition) 

MFCV = evaluateModelFit(hM=m, predY=predYCV) 

AUC = mean(MFCV$AUC,na.rm=TRUE) 

OmegaCor = computeAssociations(m) 

supportLevel = 0.95 

POS = (sum(OmegaCor[[1]]$support>(supportLevel))-m$ns)/(m$ns*m$ns-m$ns) 

NEG = (sum(OmegaCor[[1]]$support<(1-supportLevel)))/(m$ns*m$ns-m$ns) 

group = 1:(m$nc-1) 

groupnames = group  

VP = computeVariancePartitioning(m, group=group, groupnames = groupnames) 

VRAND = rowMeans(VP$vals)[m$nc] 

RUS = mean(sqrt(apply(VP$vals[-m$nc,],MARGIN = 2,FUN = var))) 



mpost = convertToCodaObject(m) 

MEA = mean(mpost$Alpha[[1]][,1][[1]]) 

SS = mean(mpost$Alpha[[1]][,1][[1]]>0) 

c(AUC,POS,NEG,VRAND,RUS,MEA,SS) 
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5   Supporting results 

The raw results are provided numerically in the .csv file of Table S2 and graphically in Figures O1-O18. In 

Table S2, the columns A-J correspond to the Choices C1-C10 that determine the scenarios and the columns 

K-AB correspond to the output metrics O1-O18. For the scenarios, the value 0 corresponds to the baseline 

choice and the value 1 to the alternative choice, the baseline choice being shown inside brackets in the 

column name. For example, for the column “C1: gradient (no gradient)” the value 0 corresponds to the 

absence of the large-scale gradient, and the value 1 to the presence of the large-scale gradient. 

In the Figures O1-O18 below, we show the raw distributions of each of the output metrics O1-O18. For the 

definitions of the output metrics, see Table 1 in the main manuscript and the Section 4 above. In each figure, 

the distribution of the output metric is shown for scenarios split accordingly to each of the ten choices C1-

C10, so that the range of values in scenarios based on one choice are shown by an orange boxplot, and the 

range of values in scenarios based on the other choice are shown by a grey boxplot. 

The numbers in brackets placed in labels of the orange box show the probability by which the output metric 

is greater for a scenario that is random selected among those that involve the choice of the orange box 

compared to a scenario that is random selected among those that involve the choice of the grey box. Thus, 

for example the output metric O1 was always greater (with probability 1) for scenarios simulated in patchy 

landscapes compared to scenarios simulated continuous landscapes. As another example, the output metric 

O4 was greater with probability 0.82 for scenarios where the species followed short-distance dispersal 

compared to those where the species followed long-distance dispersal.  
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