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Appendix	1.		Calculating	niche	breadth	and	overlap	in	environmental	space.	

	

The	methods	outlined	here	are	implemented	in	two	functions	in	the	new	

ENMTools	R	package:	“env.overlap”	and	“env.breadth”.		Each	will	work	with	any	

ENM	that	is	capable	of	producing	suitability	values	using	a	data	frame	of	

predictor	values	and	the	“predict”	function	from	the	dismo	package	(Hijmans	et	

al.	2017).		At	present	this	includes	Bioclim,	Domain,	GLM,	GAM,	Maxent,	

ppmlasso,	and	random	forest	models.		As	input,	all	functions	require	an	

ENMTools	model	object	containing	the	model(s)	being	evaluated	and	a	Raster*	

object	(Hijmans	and	van	Etten	2016)	containing	the	predictor	variables	used	to	

construct	the	model.		The	bounds	for	each	environmental	axis	are	set	by	default	

to	be	the	minimum	and	maximum	value	of	the	predictor	variable	from	their	

respective	layers	in	the	Raster*	object	if	one	is	passed,	but	bounds	can	also	be	

passed	manually	as	a	list.		We	note	that	some	modeling	approaches	are	capable	

of	extrapolating	indefinitely	along	an	environmental	gradient,	and	as	such	

overlaps	calculated	using	these	models	may	be	sensitive	to	the	choice	of	

boundaries	for	the	environment	space.		In	these	situations	it	may	be	useful	to	

explore	the	sensitivity	of	overlap	or	breadth	metrics	to	the	choice	of	boundaries	

or,	alternatively,	to	interpret	and	discuss	these	metrics	in	the	context	of	the	

chosen	boundaries	for	a	given	study.	Further,	we	caution	against	comparing	

inter-model	overlap	across	environment	spaces	with	differing	numbers	of	

predictors.	An	increase	in	dimensionality	typically	implies	a	decrease	in	niche	

overlap	(unless	niches	are	identical),	and	as	such	overlap	must	always	be	

interpreted	in	the	context	of	the	environmental	dimensions	considered	(Blonder	

et	al.	2014).	



The	process	is	demonstrated	in	Figure	S1.		An	initial	environmental	space	

of	user	specifiable	size	(argument	“chunk.size”,	which	defaults	to	100,000	

points)	is	constructed	using	random	Latin	hypercube	sampling	(see	next	section	

for	details),	implemented	in	the	R	package	lhs	(Carnell	2016).		Predictions	from	

the	model(s)	are	made	onto	these	environmental	conditions,	which	are	used	to	

calculate	B2	for	“env.breadth”	(Levins	1968;	Mandle	et	al.	2010),	or	D,	I,	and	

Spearman	rank	correlation	(ρ) for	“env.overlap”	(Schoener	1968;	Warren,	Glor,	

and	Turelli	2008).		These	metrics	are	calculated	as:	
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where	xi	and	yi	are	the	standardized	suitability	values	predicted	from	models	x	

and	y	in	the	ith	combination	of	environmental	variables	and	n	is	the	total	number	

of	environmental	combinations.		After	values	are	calculated	for	the	initial	

sample,	the	algorithm	continues	to	add	points	in	environmental	space	in	

increments	of	“chunk.size”,	recalculating	the	metrics	in	question	with	each	

addition.		The	difference	between	successive	values	for	each	metric	is	recorded,	

and	sampling	of	environmental	space	stops	when	the	difference	between	

successive	measurements	falls	below	a	user-specifiable	tolerance.			

This	approach	allows	users	to	manage	the	tradeoff	between	execution	

time	and	precision;	lower	tolerance	values	result	in	higher	precision	of	estimates	

of	niche	overlap	or	breadth,	while	higher	tolerance	values	allow	for	faster	run	



times.		The	rate-limiting	step	in	these	calculations	is	typically	the	time	it	takes	

dismo	to	make	predictions	from	models,	and	as	such	execution	time	varies	with	

algorithm.		Additionally,	convergence	of	the	estimate	will	typically	take	longer	

for	models	with	more	predictors	and	lower	environmental	niche	breadth.		For	a	

four-dimensional	environmental	space	with	a	tolerance	of	0.0001,	execution	

times	are	typically	on	the	order	of	one	to	five	seconds.		For	very	high	

dimensional	environmental	spaces	or	lower	tolerance	values,	execution	may	

take	longer.		We	note	that	the	minimum	number	of	points	used	to	calculate	

metrics	will	be	2	×	“chunk.size”,	and	that	users	can	use	this	argument	

accordingly.		The	default	chunk	size	and	tolerance	level	were	chosen	based	on	

preliminary	experimentation	with	a	variety	of	model	types	as	a	good	

compromise	between	precision	and	execution	time.		

	

Latin	Hypercube	Sampling	

	 Latin	hypercube	sampling	(LHS)	is	a	Monte	Carlo	method	developed	to	

improve	the	evenness	of	randomly	sampled	points	in	a	high-dimensional	space	

(McKay,	Beckman,	and	Conover	1979).	Ordinary	Monte	Carlo	sampling	generally	

uses	samples	drawn	from	a	uniform	distribution	along	each	dimension	of	a	

multi-dimensional	space.	The	problem	with	uniform	random	samples,	however,	

is	that	they	tend	to	form	clumps	(randomly)	along	each	axis.	This	is	typically	not	

too	extreme	along	a	single	dimension,	but	in	high-dimensional	space	the	problem	

tends	to	be	exacerbated,	leading	to	many	areas	of	the	space	with	no	sample	

coverage.	LHS	attempts	to	correct	for	this	issue,	by	using	an	algorithm	to	spread	

samples	evenly	in	every	dimension.	Briefly,	the	method	involves	dividing	the	

multi-dimensional	space	into	a	set	of		n	equal-sized	hypercubes	(n	being	the	



desired	number	of	samples),	and	then	drawing	a	single	sample	uniformly	from	

within	each	hypercube.	This	guarantees	that	each	region	of	space	across	all	

dimensions	gets	at	least	one	sample.	LHS	has	been	shown	to	improve	the	

efficiency	of	numerical	integration,	allowing	convergence	with	fewer	samples	

and	reducing	the	variance	of	estimates	made	through	Monte	Carlo	methods	

(McKay,	Beckman,	and	Conover	1979;	Stein	1987).	



	



Figure	A1.	Calculating	environmental	breadth	in	a	two	dimensional	

environmental	space	(Bioclim	variables	2	and	4,	for	species	Iberolacerta	

monticola).		For	demonstration	purposes,	“chunk.size”	in	this	example	is	set	to	5	

and	tolerance	to	0.01.		In	the	first	iteration	(top	row),	an	initial	sampling	of	five	

points	is	performed	and	the	metric	(in	this	case	B2)	is	calculated.		A	second	

sample	of	5	points	is	added	(second	row),	and	B2	is	recalculated.		Since	the	

absolute	difference	between	the	two	samples	is	greater	than	the	tolerance	(|B2	

from	the	second	row	-	B2	from	the	top	row|	>	tolerance),	a	third	sample	is	taken	

and	the	metric	recalculated	(third	row).		These	steps	are	repeated	until	the	new	

B2	does	not	differ	from	the	previous	one	by	more	than	the	tolerance	setting	

(bottom	row,	where	diff	<	tolerance),	at	which	point	the	calculation	stops.			

The	process	for	calculation	of	niche	overlap	is	the	same,	except	that	

overlap	metrics	are	designed	to	compare	two	models	constructed	with	a	

consistent	set	of	predictors.		For	each	iteration,	both	models	are	used	to	predict	

the	suitability	of	habitat	across	the	sampled	environmental	conditions.		The	

suitabilities	from	the	two	models	are	then	used	to	calculate	similarity	using	

overlap	(D	and	I,	as	per	the	equations	given	above)	and	correlation	(Spearman’s	

ρ)	metrics.	

	 	



	

	

Figure	A2.	Calculation	of	niche	breadth	from	the	model	above.		In	this	case	chunk	

size	was	100,000,	and	tolerance	was	set	to	0.00001.		Elapsed	system	time	was	

1.997	seconds.	

	

	 	



	

Figure	A3.	Execution	time	as	a	function	of	tolerance	when	calculating	

environmental	breadth	(B2),	with	chunk.size	equal	to	100,000.		The	log	(base	

10)	of	the	number	of	seconds	needed	to	produce	a	stable	breadth	estimate	is	

plotted	as	a	function	of	the	log	(base	10)	tolerance	argument	passed	to	the	

“env.breadth”	function.		Minimum	execution	time	was	approximately	0.7	

seconds,	maximum	was	141	seconds.		The	difference	between	minimum	and	

maximum	estimates	for	B2	across	all	tolerance	values	was	approximately	3%,	

showing	that	the	estimates	were	very	stable	across	tolerance	values.	This	

example	indicates	the	general	performance	of	our	approach,	yet	the	time	taken	

for	metrics	to	converge	will	vary	depending	on	specifics	of	the	problem	(e.g.,	

dimensionality,	the	shape	of	the	niche	volume,	the	range	along	each	dimension,	

etc.).		
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