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Appendix 1

Methods

The preferred habitat characteristics of each species were identified using a habitat
selectivity approach, by modelling the environmental characteristics of the locations
where the animals were recorded to be present (utilized habitat) relative to the
environmental characteristics of the areas that they could potentially have used
(available habitat). This is analogous to the presence-background approach to species
distribution modelling (e.g. Phillips et al. 2009). The tracking data provided presence
locations (i.e. areas utilized by the animals), but not absences. Areas without track
locations either represent areas that the animals do not use, or areas that would have
been utilized by the animals if a different sample had been acquired (e.g. different

animals from the same colony, or animals from a different colony).

Habitat availability was estimated by simulating tracks that were statistically similar to
the observed tracks. By simulating such tracks from the known deployment locations,
we obtained an indication of where the animals could potentially have travelled if they
did not have any preferences in terms of environmental conditions (while still
respecting the constraints on their trip duration, travel speed, and departure locations).
Similar approaches have previously been used (Wakefield et al. 2010, Zydelis et al.
2011). For each observed trip by each individual animal, 20 simulated trips were

computed using a first-order vector autoregressive model:

z(t) = Az(t -1)+ &(2)

()

is a matrix of coefficients, and &(¢) ~ N(0,€) (i.e. bivariate normal with zero mean and

4
where z(¢)is the zonal and meridional step length of the track at time ¢: z(¢) = [x( )}, A

covariance Q). Trips were simulated from the fitted model parameters by iteratively
stepping from the deployment location, using bivariate normal samples from N(0,Q).
Each simulated trip was rotated by a random angle so that the surrounding habitat in all

directions was potentially visited, with a land mask to constrain tracks to oceanic

locations.



20 simulated trips was found by trial and error to give a reasonable compromise
between data set size and stability of results (i.e. with too few simulated tracks, the

model predictions tended to be variable from one run to the next).

Environmental conditions w were collated at each point on the observed and simulated
tracks. We define the response variable g to indicate habitat use (i.e. g=1 indicates that a
certain habitat was utilized, and g=0 indicates that it was not). Ideally, we would like to
be able to estimate p(g=1|w), the probability that the species utilizes a location given its
habitat w. However, as noted above, the observed tracks only provide information
about g=1 (i.e. areas that were utilized), and not g=0 (areas not utilized). Instead, we fit
a binomial model with response variable s, where s takes the value 1 if the point is from
an observed track, or 0 for a simulated track. This model is then used to predict the
probability p(s=1|w) that a point came from an observed track given the environmental
conditions w at the location. Simulated tracks provide information about the available
habitat, and the observed tracks about utilized habitat. The probabilities p(s=1|w) can
be therefore interpreted as a description of habitat use relative to availability (2008,
2010). However, it is important to note that these probabilities are not interpretable as
direct estimates of the probabilities p(q=1|w). Under mild assumptions, p(s=1|w) can be
shown to be nonlinearly but monotonically related to p(q=1|w), with the relationship
being dependent on the prevalence of the species (i.e. P(q=1), the probability that an
individual utilizes a randomly sampled site) (Aarts et al. 2008, Phillips et al. 2009).
Direct comparison of p(s=1|w) between species with differing prevalences is therefore

not meaningful.

However, consider a discrete set of grid cells, obtained by applying a threshold to the
p(s=1|w). That is, we identify grid cells with p(s=1|w) values greater than some
threshold. By appropriate selection of the threshold value, the area covered by these
grid cells can be chosen to represent a certain fraction of the total area (say, 10% —
thus identifying the most important 10% of geographic space associated with a
particular model output). The monotonic relationship between p(s=1|w) and p(g=1|w)
means that exactly the same grid cells would be obtained by applying a threshold to the
p(g=1|w), albeit with a different threshold value. Thus, given the predicted habitat
preferences for a species, we can partition the study region into areas of decreasingly

important habitat by thresholding the p(s=1|w) estimates at decreasing levels. This



yields a transformed prediction map, wherein each value is a habitat importance
percentile (by area). These percentile values can be compared across species, allowing

us to quantify the degree of overlap between the different species.

Models were first fitted using boosted regression trees (De'ath 2007, Elith et al. 2008)
as an exploratory step, to assist in the identification of relevant predictor variables.
Final models were fitted as binomial generalized additive models (GAMs) with logit link.
Variable selection was guided by expert knowledge of the species in question,
previously published research, model accuracy, examination of the fitted component

smooth terms, and the spatial pattern of those component terms.

The tracking data display serial correlation (successive locations come from the same
individual animal). This has two important consequences. The first is that the
smoothness estimation of model terms in GAM is likely to under-smooth. Appropriate
smoothness of terms was enforced here by specifying the degrees of freedom of
individual model terms. The second issue is that standard methods for estimating
parameter uncertainty assume independence in the model residuals, and so in the
presence of serial correlation will give uncertainty estimates that are too optimistic.
Consequently, standard methods for model selection (e.g. using Akaike’s Information
Criterion, or likelihood-ratio tests) are unreliable. Instead, a cross-validation procedure
was used for model selection and assessment. Individual animals were randomly
assigned to one of ten data folds. Each model was trained on nine folds and tested on the
remaining one, withholding each fold in turn. Predictive performance was then
aggregated across the ten sets of results. The area under the receiver operating curve
(AUC) was used as the index of predictive performance. AUC values were calculated for
each individual animal in the testing data fold. The overall AUC performance for a given
model is reported as the mean and standard deviation of the AUC results across all
individual animals. Cross-validating by individual animal is important because the
reported accuracies reflect inter-individual variability (i.e. the ability of the fitted model

to predict the habitat preference of a previously-unseen individual animal).

The fitted model for each species was used to predict the habitat preference for that
species across the entire region of interest. Predictions were made for each month

November-February, and then averaged to give a single composite summer prediction.



Estimates of uncertainty in spatial predictions were calculated by a similar cross-
validation method to the one described above. For a given set of predictor variables,
cross-validating by individual gives an estimate of the uncertainty in the model
predictions arising from individual variability. However, the predictor variables
available for large-scale habitat modelling are by necessity either remote-sensed or
modelled, in order to provide regional coverage at appropriate spatial and temporal
resolution. Typically, these predictors are proxies for the actual processes and
conditions that influence the behaviour of the animals. For example, there is no direct
estimate of food availability for any of the species. Even parameters that might be
considered directly relevant (e.g. satellite-derived sea ice concentrations as an indicator
of ice-mediated accessibility of open water) are generally not so, because the spatial and
temporal scales of the predictor data are much coarser than the actual environmental
conditions experienced by the animals. As well as being proxies for more direct (but
unmeasurable) information, the predictor variables in the Southern Ocean are typically
highly correlated, because of the strong latitudinal and seasonal gradient that affects
oceanic and atmospheric conditions. Because of these factors, it is rarely obvious which
particular predictor variable is the most appropriate proxy to use in a given model.
Predictive performance offers some guidance, but should not be relied upon exclusively,
particularly with small sample size. Therefore, in order to obtain reasonable
assessments of the uncertainties in the spatial predictions, we applied the cross-
validation procedure across predictor variables as well as individual animals. That is,
for a given model, each individual predictor variable was in turn swapped for one or
more alternative predictors that were deemed to be plausibly able to act as a similar
proxy. The model was re-fitted and the spatial predictions re-calculated each time. The
range of predictions obtained (i.e. across all combinations of data folds and predictor
variable sets) was used as an indication of the uncertainty in the spatial predictions for

that model.

Individual species predictions were combined to quantify overlap. For each grid cell in
the study region, the top four habitat importance values were averaged. Uncertainty in
the overlap was estimated by resampling from the range of predictions for each species
(i.e. combinations of data folds and predictor variable sets) and repeating the overlap

calculations.



Predictor variables

The environmental predictor variables available for the habitat selectivity modelling are
listed in Table S3. All predictions were made on a 0.1-degree grid from 30-150 °E, 71-
55 °S. Interpolation of predictor data to the prediction grid or track points was by
bilinear interpolation, except where noted. All distances were calculated as great-circle
distances assuming a spherical earth of radius 6378.1 km. Data and further details are

available from http://webdav.data.aad.gov.au/data/environmental /derived/.

The transport cost variables were intended to provide an estimate of the accessibility of
an area to animals from a certain colony, accounting for the prevailing winds or ocean
currents. These were calculated following a similar method to that used by Raymond et
al. (Raymond et al. 2010). Briefly, the preferred speed of the animal through the air (for
light-mantled albatrosses) or water (penguins and seals) was estimated from published
studies. For light-mantled albatrosses, this was taken as the best glide speed (i.e. the air
speed at which the forward speed is highest relative to the descent rate; Pennycuick
2008), which was estimated at 12.3 m/s. For penguins and seals, swimming speeds
were taken from published estimates of “preferred” or “normal” swimming speed. Given
this speed and the prevailing wind or current field, the time required to travel between
two given locations can be calculated by simple vector arithmetic. A spatial grid was
overlaid on the study region, and the time required to transition between each cell and
its 8 adjoining neighbours calculated. Grid cells were randomly placed with average
spacing of 0.2° in longitude and 0.1° in latitude. The minimum time required to travel
from a given colony location to a particular destination (and return) was calculated
using these transition costs and the Bellman-Ford shortest paths algorithm. The
prevailing near-surface wind was estimated using a long-term average (2000-2010) of
data from NCEP/DOE Reanalysis 2 (Kanamitsu et al. 2002). The surface ocean current
field was estimated from a circumpolar Antarctic implementation of the Regional Ocean

Modelling System (ROMS) data (Galton-Fenzi et al. 2012).

The distance from deployment and transport cost variables require knowledge of the
deployment location of an individual animal. For training data (i.e. observed and
simulated tracks) this is known. For gridded predictions, known colony locations of the
species of interest were used to compute the distance from deployment (i.e. colony) and

transport cost for all colonies. The gridded predictor value at a given grid cell was taken



as the minimum distance or cost across all colonies. Similarly, the sea ice monthly,
distance to sea ice monthly, and sea ice days since melt variables were matched to the
actual times of the animal locations. For gridded predictions, the long-term mean values

of these fields were used.
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Figure Al. Observed (red) and simulated (black) tracks. (a) male Antarctic fur seals, (b)
light-mantled albatrosses, Adélie penguins during the (c) incubation and (d) chick-
rearing periods, emperor penguins during the (e) chick-rearing and (f) pre-moult

periods, (g) southern elephant seals, and (h) female Weddell seals.
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Figure A2. Uncertainty associated with the predicted habitat importance values shown
in Figure 1. (a) male Antarctic fur seals, (b) light-mantled albatrosses, Adélie penguins
during the (c) incubation and (d) chick-rearing periods, emperor penguins during the
(e) chick-rearing and (f) pre-moult periods, (g) southern elephant seals, and (h) female
Weddell seals. Uncertainty was calculated as the interquartile range of predicted values,
using a cross-validation procedure (see text). Green points show colony locations for
the Antarctic-breeding Adélie and emperor penguins; green arrows show the direction
of (from west to east) subantarctic Marion and Prince Edward, Crozet, Kerguelen,
Heard, and Macquarie islands, which host breeding colonies of Antarctic fur seals,

southern elephant seals, and light-mantled albatrosses.



Table Al. Further details for each of the single-species models and data. Model specification is given in the format of a formula passed to

the gam function in the R mgcv package. The predictor swaps were used in the estimation of the uncertainty in the predictions for each

model (see Supplementary material Appendix 1).

Species Data notes and Data date Model specification Predictor swaps

references range

Predictor variable Alternatives
or model term

Antarctic fur All data were obtained 1-Jan - 28- p~ Distance to polynya Distance to sea ice monthly
seal (post- from trackers deployed Feb. s(log10(chl_summer_climatology), Seaice cover
breeding sub-  on post-breeding sub- Data came k = 5) + s(transport_cost, k=5) +
adult/adult adult and adult male from the s(distance_to_polynya, k = 5) log10(summer Primary production (February mean)
males) individuals. 2003/04 mean chlorophyll-

References: (Gales et al. austral a)

2004, updated 2010) summer

season Transport cost Distance from deployment

Adélie penguin The GPS tracking studies  24-Nov - p ~ s(transport_cost, k=7) + te(sea ice cover, te(sea ice monthly,distance to upper
(incubation) of Adélie penguins at 29-Dec. Data te(seaice_cover, distance to upper slope)

Dumont d’'Urville were came from distance_upper_slope, k=¢c(3,3)) slope) te(seaice cover, log10(bathymetry))

supported logistically by  eight

the French Polar individual Transport cost Distance from deployment

Institute (IPEV) and the austral

Terres Australes et summer

Antarctiques Francaises seasons

(TAAF), as well as from




Adélie penguin

(chick-rearing)

Emperor
penguin

(chick-rearing)

Emperor
penguin (pre-

moult)

financially by the WWF
and the Zone Atelier
Antarctique et
subantarctique.
References: (Clarke et al.
1998, Clarke et al. 2006,
Cottin et al. 2012,
Emmerson et al. 1999,
updated 2013, Kerry et
al. 1997, Nicol et al. 2008,
Wienecke et al. 2000)

References: (Wienecke et

al. 2004)

References: (Wienecke et

al. 2004)

1991/92-
2011/12
22-Dec - 16-
Feb. Data
came from
13
individual
austral
summer
seasons
from
1991/92-
2011/12
5-Dec - 13-
Dec. Data
came from
the 2000/01
austral
summer
season
15-Dec - 26-
Feb. Data
came from
the 2000/01

austral

p ~ s(logl0(bathymetry), k=7) + Seaice cover
te(seaice_summer_variability,

seaice_cover, k = c(4, 4)) +

s(transport_cost, k=5) + Transport cost

s(distance_upper_slope, k = 7)

p ~ s(transport_cost, k=5) + Transport cost
s(fast_ice, k= 4)

Fastice cover

p ~ s(log10(bathymetry), by = log10(bathymetry),
on_shelf, k=5) + by=on_shelf
s(distance_to_fast_ice, k = 5)

Distance to fast ice

Sea ice monthly

Distance to sea ice monthly

Distance from deployment

Distance from deployment

Distance to fast ice

Distance to Antarctica

Distance to upper slope

Distance to sea ice monthly




Light-mantled
albatross

(chick-rearing)

Southern
elephant seal
(post-
breeding/post-
moult males

and females)

All data were obtained
from trackers deployed
on adult individuals
during the chick-rearing
phase of the breeding
season.

References: (Lawton et
al. 2008, Weimerskirch
and Robertson 1994)

Some elephant seal data
was sourced from the
Integrated Marine
Observing System
(IMOS), which is
supported by the
Australian Government
through the National
Collaborative Research
Infrastructure Strategy
and the Super Science

Initiative. Data were also

summer
season
14-Nov -
28-Feb. Data
came from
three
individual
austral
summer
seasons
from
1992/93-
2003/04
11-Nov to
28-Feb. Data
came from
eight
individual
austral
summer
seasons
from
2003/04-
2010/11

p ~
s(surface_zonal_wind_summer, k
=7) + s(seaice_days_since_melt,
by = seaice_zone_flag, k=7) +

s(transport_cost, k = 7)

p ~ te(distance_from_deployment,
log10(bathymetry), k = c(4,4)) +

s(seaice_monthly, k = 5)

Summer mean

zonal wind

Sea ice days since

melt

Transport cost

te(distance from
deployment,
log10(bathymetry))

Sea ice monthly

Distance to upper slope

Distance to sea ice monthly

Seaice cover

Distance from deployment

te(distance from deployment, distance to
upper slope)

te(distance_antarctica,log10(bathymetry))

Distance to sea ice monthly

Seaice cover




Weddell seal

obtained from the MEOP
(Marine Mammals
Exploring the Oceans
Pole to Pole)
International Polar Year
programme and the
SEaOS (Southern
Elephant Seals as
Oceanographic
Samplers) project. The
French elephant seal
data collected as part of
SEaOS and MEOP were
provided by the SO-
MEMO project (PI C.
Guinet).

References: (Bestley et
al. 2012, Biuw et al.
2007)

Some Weddell seal data
was sourced from the
Integrated Marine
Observing System
(IMOS), which is
supported by the

1-Nov - 28-

Feb. Data
came from
four
individual

austral

p ~ s(log10(bathymetry), k = 5) +
s(distance_to_fast_ice, k = 4) +

s(distance_to_polynya, k = 4)

log10(bathymetry)

Distance to fast ice

Distance to polynya

Distance to Antarctica

Distance to sea ice monthly

Seaice cover




Australian Government
through the National
Collaborative Research
Infrastructure Strategy
and the Super Science
Initiative.

References: (Andrews-
Goffetal. 2010, Heerah
etal. 2012, Lake et al.
2006)

summer
seasons
from
1999/2000-
2007/08




Table A2. Summary of the important environmental dependencies in the individual species models. “Post-polynyas” refers to locations

corresponding to winter polynyas, but in the spring/summer when they are technically no longer polynyas. Note that interpretation of this table is

complicated by the indirect nature of many of the predictor variables, and also by the strong, common latitudinal and seasonal structuring of many

environmental processes in the East Antarctic region, which makes it difficult to ascribe particular importance to individual environmental variables.

Species

Features

Antarctic fur seal (post-breeding sub-

adult/adult males)

Adélie penguin (incubation)

Adélie penguin (chick-rearing)

Emperor penguin (chick-rearing)

Emperor penguin (pre-moult)

Light-mantled albatross (chick-rearing)

Southern elephant seal (post-
breeding/post-moult males and

females)

Marginal ice zone. Areas of elevated productivity in the marginal ice zone and to the east of the Kerguelen Plateau.

Moderately constrained to near-continental areas generally south of the breeding colony.

Offshore polynyas or areas or reduced ice cover. Marginal ice zone, avoiding areas of heavy sea ice cover. Shelf slope.

Constrained to within approx. 400 km of breeding colony.

General use of shelf post-polynya areas, but not exclusively. Areas of moderate variability in summer sea ice cover, avoid

areas of heavy cover. Shelf slope. Constrained to within approx. 150-200 km of breeding colony.

Shelf post-polynya locations. Near fast ice, but avoiding areas typically fast-ice covered. Constrained to within approx.

100 km of breeding colony.
Within approx. 100km of fast ice. Open-ocean areas north of the shelf slope. Deep areas of the shelf.

Marginal ice zone, particularly recently ice-covered areas. Open-ocean areas north of the shelf slope, in the easterly wind

band south of about 66 °S. Moderately constrained to oceanic areas generally south of the breeding colony.

Shelf post-polynyas. Marginal ice zone, avoiding heavy ice cover. Shallow parts of shelf. Large dispersal distances.




Weddell seal Within approx. 100km of winter polynya locations and approx. 100km of fast ice. Shallow parts of shelf. Highly

territorial.




Table A3. Environmental predictor variables.

Variable Description and source data Source data Description and processing steps
Bathymetry Measured and estimated sea floor Smith and Sandwell (Smith and

topography from satellite altimetry and ship ~ Sandwell 1997) V15.1 at 1-minute

depth soundings resolution
Bathymetry slope Slope of sea floor As above Slope calculated on 0.1-degree gridded depth

Mean summer chlorophyll-a

Distance to Antarctica

Distance from deployment

Distance to maximum ice extent

Distance to canyon

Distance to fast ice

Near-surface chlorophyll-a summer
climatology

Distance to the nearest part of the Antarctic
continent

Distance from deployment location

Distance to the nearest point on the line of

mean maximum winter sea ice extent

Distance to the axis of the nearest canyon

Distance to the nearest location where fast

ice is typically present

MODIS Aqua at 9km resolution
(Feldman and McClain 2010)
World map shapefile courtesy of

ESRI

SMMR-SSM/I passive microwave
estimates of sea ice concentration at
25km resolution (Cavalieri et al.

1996, updated yearly)

Seafloor geomorphic feature dataset
(Post, unpublished data, expanded
from O'Brien et al. 2009)

20-day composite records of landfast
sea-ice at 2km resolution, derived

from MODIS imagery (Fraser et al.

data (above)
Climatology spans the 2002/03 to 2012/13

austral summer seasons

Distance for each individual calculated from
the deployment location where known,
otherwise from the first recorded position for
that individual

Mean maximum winter sea ice extent over
the 1979/80 to 2008/09 austral summer
seasons was derived from daily estimates of
sea ice concentration as described in this

metadata record

Fast ice considered to be “typically present”
at pixels that were associated with fast ice

presence for more than half of the year on




Distance to polynya

Distance to sea ice monthly

Distance to upper slope

Fast ice coverage

Floor temperature

Distance to nearest winter polynya location

Distance to nearest sea ice

Distance to the "upper slope" geomorphic

feature

The average proportion of the year for which

landfast sea ice is present

Seafloor water temperature

2012)
AMSR-E satellite estimates of daily
sea ice concentration at 6.25km

resolution (Spreen et al. 2008)

SMMR-SSM/I passive microwave
estimates of sea ice concentration at
25km resolution (Cavalieri et al.

1996, updated yearly)

Seafloor geomorphic feature dataset
(Post, unpublished data, expanded
from O'Brien et al. 2009)

20-day composite records of landfast
sea-ice at 2km resolution, derived
from MODIS imagery (Fraser et al.
2012)

Floor temperatures derived from
World Ocean Atlas 2005 data at 1-
degree resolution (Clarke et al.

2009)

average
The sea ice coverage layer (below) was used.
Pixels which were, on average, covered by sea
ice for less than 35% of the year were
identified as polynya pixels. The threshold of
35% was chosen to give a good empirical
match to the polynya locations identified by
Arrigo & van Dijken (Arrigo and van Dijken
2003), although the results were not
particularly sensitive to the choice of
threshold

Mean monthly sea ice data, matched to the
time of each observation, were used. A
threshold of 15% ice concentration was used
as the cutoff between open and ice-covered

water

The average proportion of the year for which
each pixel was covered by landfast sea ice
was calculated as an average across 2001-
2008

Isolated missing pixels (i.e. single pixels of
missing data with no surrounding missing
pixels) were filled using bilinear
interpolation. Subsequent interpolation to

grid or track points by nearest neighbour




Geomorphology

Summer mean mixed layer depth

Sea ice coverage

Sea ice days since melt

Sea ice monthly

Sea ice summer variability

Geomorphic feature classes

Summer mixed layer depth climatology

The average proportion of the year for which

sea ice is present

Number of days since the location was last

covered by sea ice

Monthly mean sea ice cover, matched to the

month of the observation

Variability of sea ice cover during summer

months

Seafloor geomorphic feature dataset
(Post, unpublished data, expanded
from O'Brien et al. 2009). Mapping
based on GEBCO contours, ETOPO2,
seismic lines

ARGO float data at 2-degree
resolution (de Boyer Montegut et al.
2004)

AMSR-E satellite estimates of daily
sea ice concentration at 6.25km

resolution (Spreen et al. 2008)

SMMR-SSM/I passive microwave
estimates of sea ice concentration at
25km resolution (Cavalieri et al.
1996, updated yearly)

SMMR-SSM/I passive microwave
estimates of sea ice concentration at
25km resolution (Cavalieri et al.
1996, updated yearly)

AMSR-E satellite estimates of daily
sea ice concentration at 6.25km

resolution (Spreen et al. 2008)

interpolation

Interpolation to grid or track points by

nearest neighbour interpolation

Concentration data from 1-Jan-2003 to 31-
Dec-2010 was used. The fraction of time each
pixel was covered by sea ice of at least 85%
concentration was calculated

A threshold of 15% ice concentration was
used as the cutoff between open and ice-

covered water

Daily estimates of sea ice concentration
across December, January, and February of a
given austral summer season were collated.
For each pixel, the standard deviation of
these values was calculated. The values given
here are averaged over the 2002/03 to

2009/10 austral summer seasons




Sea surface height

Sea surface height spatial gradient

Mean summer sea surface temperature

Sea surface temperature spatial gradient

Summer surface wind speed

Summer zonal surface wind speed

Summer meridional surface wind speed

Transport cost

Primary productivity

Mean dynamic topography (sea surface

height relative to geoid)

The spatial gradient (in mm/km) of the

mean dynamic topography

Sea surface temperature summer
climatology

Spatial gradient of mean summer SST
(above)

Mean wind speed at 10m height

Mean zonal wind speed at 10m height

Mean meridional wind speed at 10m height

See description above
Mean February net primary productivity
estimated from a vertically generalized

production model (VGPM)

CNES-CLS09 Mean Dynamic
Topography v1.1 at 0.25-degree
resolution (Rio etal. 2011)
CNES-CLS09 Mean Dynamic
Topography v1.1 at 0.25-degree
resolution (Rio et al. 2011)

MODIS Aqua at 9km resolution
(Feldman and McClain 2010)
MODIS Aqua at 9km resolution
(Feldman and McClain 2010)
NCEP/DOE Reanalysis 2 at 2.5-
degree resolution (Kanamitsu et al.
2002)

NCEP/DOE Reanalysis 2 at 2.5-
degree resolution (Kanamitsu et al.
2002)

NCEP/DOE Reanalysis 2 at 2.5-
degree resolution (Kanamitsu et al.

2002)

VGPM data at 1/6-degree resolution
(Behrenfeld and Falkowski 1997)
obtained from the Oregon State

ocean productivity web site

Gradient calculated on the native 0.25-degree

grid

Climatology spans the 2002/03 to 2009/10
austral summer seasons

Spatial gradient of the SST (degrees C per km)
calculated on the original 9km resolution data
Calculated from 2000-2010 monthly mean

values

Calculated from 2000-2010 monthly mean

values
Calculated from 2000-2010 monthly mean

values

Mean monthly February productivity, 2003-
2010
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