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Appendix 1 Map of the 453 islands considered in this study. Legend numbers for species richness

refer to upper limits of classes. Symbol size is a linear function of log,, island area.
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Appendix 2 Calculation of seventeen isolation metrics in sixty-eight variations (indicated by minor

letters) and their underlying hypotheses. Symbology follows Fig. 1 and Table 1. GIS analyses were

performed in ArcGIS/ArcINFO Desktop 9.3.1 (ESRI, Redlands). Landmass polygons were extracted

from the GADM database of global administrative areas (Hijmans et al., 2009).

Metric Calculation Hypothesis

D1, shortest distance from a) target island mass centroid continents are the most
and b) coastline to mainland coastline (excluding important source landmasses for
Antarctica) using 'Generate Near Table' tool in ArcGIS; immigration on islands.
azimuthal equidistant map projection centred for
target island.

D2, shortest distance from target island coastline to continents and islands, at least

U3 =D1b,"?+ D, + D2g"?

D4,

D5

stcem; stDGm - Z iiDm

coastline of a landmass of defined minimum area
calculated like D1b,,; varying minimum source area:
a-f) 10°-10° km?; g-p) 1-10 times the target island area.

for 229 islands, isolation index obtained from UNEP
Island Directory (http://islands.unep.ch/isldir.htm);
missing values calculated according to Dahl (2004) as
sum of square roots of distances to nearest equivalent
or larger island (D2g), nearest island group or
archipelago (D,) and nearest continent (D1b,,); where
one of these did not exist, next higher distance was
repeated, except in the case of small satellite islands
close to much larger landmasses; D, measured
according to UNEP Island Directory island group or
archipelago affiliation.

shortest distance from target island coastline to
climatically similar mainland area using 'Generate Near
Table' tool in ArcGIS; azimuthal equidistant map
projection centred for target island; source defined as
areas being on average not more than 2°C colder than
the minimum and not more than 2°C warmer than the
maximum mean annual temperature on the target
island and receiving not more than 20% less annual
rainfall than the minimum and not more than 20%
more than the maximum annual precipitation on the
target island (WorldClim; Hijmans et al., 2005); for
three high Arctic islands no climatically similar
mainland area could be identified, distance to
mainland was used instead.

shortest distance from target island coastline to
climatically similar area on the landmass of defined
minimum area calculated like D4.,; varying minimum
source area: a-f) 10°-10° km2.

shortest stepping stone distance from target island
coastline to mainland coastline calculated using the
'Cost Distance' tool of the 'Spatial Analyst' in ArcGIS;
analysis window radius = D1b,, + 1,000 km; the 'Cost
Distance' tool calculated the least accumulative cost
distance for each cell of a raster layer to the nearest
source over a cost surface; the cost surface was a
raster layer of 1 km? resolution considering all islands
of at least 1 km? as stepping stones; using a higher
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large ones, both serve as
important sources for
immigration on islands.

continents and islands, at least
large ones, both serve as
important sources for
immigration on islands; isolation
can be explained as additively
compound of distances to
mainland, archipelagos and
islands.

only those parts of continents
which are climatically similar to
the target island serve as source
areas for immigration to islands.

those parts of continents and at
least large islands which are
climatically similar to the target
island serve as source areas.

stepping stones facilitate
dispersal from source landmasses
to the target island; continents
are the most important source
landmasses;

a) only dispersal over water limits
immigration on islands;

b) dispersal over water limits
immigration on islands more than



StMC7m; stMD7m - (z iiDmx)/y

max"DSm

stD9I - z iiDI

StMC10|; StMD10| - (z iiDlx)/y

max"D11.

Ye12,,

resolution was not feasible due to computational
limitations; costs were defined as a) 1 unit per km over
water, 0 units per km over land (*D6ay,; sum of inter-
island distances ('D,,) in km) or b) 2 units per km over
water, 1 unit per km over land (*C6b,,) double
counting the distance over water.

stepping stone distance from target island coastline to
mainland coastline on minimum inter-island distance
path calculated by means of two consecutive 'Cost
Distance' analyses (see above); first, calculation of cost
distance raster using all landmass as source and a cost
surface raster with costs of 1 unit per km over water
and 0 units per km over land; second, calculation of
cost distance raster for mainland as source using the
first output cost distance raster + 1 as input cost
surface, i.e. fixed costs of 1 unit per km over land and
increasing costs with increasing distance to landmass
coast over water; the second output cost distance
raster shows exponentially increasing costs with
increasing length of inter-island distances forcing the
algorithm to find a stepping stone path of minimum
inter-island distances (“Dm); a least cost path was
calculated using the 'Cost Path' tool; area (A) and
number (#) of stepping stones were used in
calculations of weighted stepping stone distances:

a) costs derived from 'Cost Distance' analysis (*™C7,,);
b-g) unweighted and weighted distances over water
extracted from cost distance path (S'MD7m): b)x=1,
y=1¢c)x=2,y=1d)x=1,y=5A;e)x=2,y=5 A
flx=1,y=#g)x=2,y=#.

maximum inter island distance to mainland extracted
from minimum inter-island distance path (*"™D7b,,).

shortest stepping stone distance from target island
coastline to coastline of Ian.dmass of at least 100,000
km? calculated like *D6a,,; "D, = inter-island distances.

stepping stone distance from target island coastline to
coastline of landmass of at least 100,000 km? on
minimum inter-island distance path calculated like

s™Mc7,, and *VD7,,; 'D, = inter-island distances;

a) costs derived from cost distance analysis (*"'C10,);
b-g) unweighted distances over water and distances
weighted by area (A) or number of stepping stones (#)
extracted from cost distance path (S'MC10|): b)x=1,
y=1,¢c)x=2,y=1d)x=1,y=5A;e)x=2,y=5A
flx=1,y=#g)x=2,y=#.

maximum inter island distance to landmass of at least
100,000 km? extracted from minimum inter-island
distance path (*'D10b,).

distance to mainland corrected for prevailing winds
calculated using the 'Path Distance' tool of the 'Spatial
Analyst' in ArcGIS; 'Path Distance' allows to
incorporate a horizontal factor in the calculation of
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dispersal over land.

stepping stones facilitate
dispersal from source landmasses
to target island; continents are
most important source
landmasses; the length of the
inter-island distances limits
dispersal;

b-g) x = 2: greater influence of
larger distances; y = 5 A: greater
influence of large stepping stones;
y = #: number of stepping stones
important.

the length of the maximum inter-
island distance between target
island and mainland is critical in
limiting immigration.

stepping stones facilitate
dispersal from source landmasses
to target island; continents and
very large islands serve as
sources.

stepping stones facilitate
dispersal from source landmasses
to the target island; continents
and very large islands serve as
sources; the length of the inter-
island distances limits dispersal;
b-g) a = 2: greater influence of
larger distances; y = 5 A: greater
influence of large stepping stones;
y = #: number of stepping stones
important.

the length of the maximum inter-
island distance between target
island and large landmasses is
critical in limiting immigration.

prevailing winds affect dispersal
probabilities between mainland
and target island.



c13,,

*Weaq,,

stCClsm

N16 = 5 (A/(D; + 1)°)

A17,=3 (A/A)

cost distances (see above) accounting for horizontal
friction; the horizontal factor was calculated from a
raster layer of horizontal wind directions using a linear
function of the angle between the wind direction and
the target (in ArcGIS: horizontal relative moving angle
(HRMA); zero factor = 0.5, cut angle = 181, slope =
0.011); costs of the cost surface raster were set to 1
unit per km; analysis window radius = D1b,, + 1,000
km;

prevailing wind directions at water and land surface
averaged over 10 years were calculated from monthly
means of zonal and meridional wind speed vectors
taken from the NCEP/NCAR Reanalysis Project (Kistler
et al. 2001) for the time period from 1981 to 1990 at
2.5° resolution. Data were downscaled to 1 km?
resolution.

distance to mainland corrected for prevailing ocean
currents calculated like V€12, prevailing ocean
current directions at water surface averaged over 10
years were calculated from three-day means of zonal
and meridional velocity vectors at 0.25° resolution for
the period from 1997 to 2006 taken from the NASA
project ECCO2 (Menemenlis et al. 2008) Data were
downscaled to 1 km? resolution.

stepping stone distance to mainland corrected for
prevailing winds calculated like Wc12,,; costs defined
as 1 unit per km over water and 0 units per km over
land.

stepping stone distance to mainland corrected for
prevailing ocean currents calculated like cC13m; costs
defined as 1 unit per km over water and 0 units per km
over land.

Neighbour Index of Kalmar and Currie (2006)
calculated as the sum of the area of all neighbouring
islands closer than the nearest mainland weighted by
their squared distances; shortest distances from target
island coastline to source island coastlines calculated
like D1b,,;

a) only islands closer than mainland; b) all islands; c) all
landmass; d) all landmass (logyg A)).

proportion of landmass in the surrounding of the
target islands within defined buffer distance (from
polygon perimeter); '‘Buffer' tool in ArcGIS was applied
at an azimuthal equidistant map projection centred for
each target island; areas of clipped landmasses were
calculated using a cylindrical equal area projection;
buffer distances were selected covering the full range
of possible distances at logarithmic scale starting at 1
km;

a-e) varying buffer radius (r) from 10° to 10* km (n=1);
f-0) sums of landmass proportions in all possible
combinations of n=2 to n=5 consecutive buffer
distances: f) 10°-10" km; g) 10’-10? km; h) 10%-10% km;
i) 10°-10* km; j) 10°-10% km; k) 10"-10° km;

1) 10°-10* km; m) 10°10> km; n) 10*-10* km;

0) 10%-10" km.

prevailing ocean currents affect
dispersal probabilities between
mainland and target island.

prevailing winds affect dispersal
probabilities between mainland
and target island; stepping stones
facilitate dispersal.

prevailing ocean currents affect
dispersal probabilities between
mainland and target island;
stepping stones facilitate
dispersal.

all surrounding landmasses serve
as sources for immigration on
islands; contribution of potential
source landmasses increases with
area.

all surrounding landmasses serve
as sources for immigration on
islands; not only the distance to
but the amount of available
source land area nearby drives
immigration rates; source
coastline shape is important.




Appendix 3 Matrix of Pearson’s correlation coefficients among seventeen isolation metrics. Metric variations that showed highest model fits (AIC) in spatial
multi-predictor models of vascular plant species richness on 453 globally distributed islands are presented here. See Fig. 1 and Table 1 for explanation of metric

abbreviations. All correlations are significant with p < 0.001.

Dla, D2f, U3 Dac,, Dsec,  “'ceb,  “MD7b, max'D8, Dol *™Mp1ob, max'D11, “c12,,  c13,  *Wcis,, *“cis,, :\‘l’fé‘;g
D2f, 0.96
u3 0.88 0.87
D4, 0.93 0.90 0.85
DSeq 0.87 0.89 0.78 0.83
*'C6b 1.00 0.96 0.87 0.92 0.88
*Mb7b,, 0.97 0.95 0.85 0.90 0.85 0.98
max'D8,, 0.69 0.78 0.74 0.64 0.66 0.71 0.69
Dy, 0.96 0.99 0.86 0.89 0.90 0.97 0.95 0.79
*Mb10b, 0.96 0.97 0.82 0.88 0.87 0.97 0.97 0.74 0.98
max'D11, 0.63 0.70 0.74 0.64 0.58 0.64 0.67 0.82 0.72 0.65
We12,, 0.91 0.87 0.84 0.89 0.78 0.90 0.86 0.55 0.84 0.83 0.55
c13,, 0.98 0.95 0.87 0.93 0.85 0.98 0.95 0.66 0.94 0.93 0.61 0.94
Weq,, 0.94 0.92 0.84 0.90 0.84 0.94 0.92 0.63 0.91 0.90 0.62 0.97 0.95
CC1s,, 0.98 0.96 0.86 0.91 0.87 0.99 0.98 0.72 0.97 0.96 0.66 0.89 0.98 0.94
loglog N16. 087 -0.8  -094 -08  -0.77 -0.86 -0.83 065  -0.82 -0.80 -0.64 -0.85 -0.85 -0.84 -0.84
log A17], 075 073 -088  -0.74  -0.67 -0.75 -0.73 061  -0.72 -0.68 -0.61 -0.73 -0.73 -0.74 -0.73 0.89




Appendix 4 Model fits of spatial simultaneous autoregressive models (SAR) for log;o-transformed
vascular plant species richness on 453 islands as response variable and different isolation metrics as
explanatory variables. Models include one isolation metric variation, either alone (r?) or in a multi-
predictor framework (R?) accounting for island area, temperature, precipitation, elevational range
and geology. r%, and R, accounting for spatial autocorrelation are shown in parentheses. For multi-
predictor models, AAIC was calculated as the difference from the best model (AIC = 121.8). P-values
in the multi-predictor models refer to estimates of the respective isolation metric. R%,.q4 represents
the absolute contribution of the respective isolation metric to the full model fit (R?). See Fig. 1 and
Table 1 for explanation of metric abbreviations. Significance: *** (p < 0.001), ** (p < 0.01),

* (p < 0.05), n.s. (not significant at p > 0.05).

single-predictor models multi-predictor models
Isolation metric r? (r’p) p R*(R%,) AAIC P R%pmvd
Dla,, 0.240 (0.489)  *** 0.786 (0.851) 29.3 ***  (.152
D1b,, 0.254 (0.499) - *** 0.785 (0.851) 30.6 ***  0.155
D23, 0.084 (0.502)  *** 0.728 (0.837) 79.4 ***  0.016
D2b, 0.159 (0.486)  *** 0.728 (0.834) 84.4 ***  0.018
D2c, 0.200 (0.479)  *** 0.743 (0.838) 71.3 ***  0.045
D2d, 0.201 (0.481)  *** 0.756 (0.846) 46.3 ***  0.080
D2e, 0.227 (0.488) ok k 0.770 (0.847) 43.0 *** 0.110
D2f, 0.264 (0.499)  *** 0.786 (0.852) 26.7 ***  0.158
log D2g, 0.016 (0.517) n.s. 0.736 (0.838) 749 ***  0.022
log D2h, 0.018 (0.517) n.s. 0.736 (0.837) 759 ***  0.023
log D2i, 0.013 (0.520) n.s. 0.732 (0.837) 76.1 ***  0.021
log D2j, 0.013 (0.520) n.s. 0.733 (0.838) 75.0 ***  0.022
log D2k, 0.013 (0.520) n.s. 0.734 (0.838) 75.3 ***  0.022
log D2I, 0.012 (0.522) n.s. 0.732 (0.837) 77.8 *** 0.020
log D2m, 0.013 (0.522) n.s. 0.734 (0.837) 76.7 ***  0.021
log D2n, 0.013 (0.523) n.s. 0.734 (0.837) 77.4 ***  0.021
log D20, 0.011 (0.525) n.s. 0.734 (0.837) 78.0 ***  0.020
log D2p, 0.010 (0.529) * 0.734 (0.837) 77.8 ***  0.020



u3

D4,

log D5aqy
log D5by,
D5c¢cq

D5d,

D5e

D5f,
*D6ay,
*C6bm

log *™C7anm
*MD7b,,
log *VD7¢c,n
*MD7d,,
log *D7e,
log *MD7f.,
log *MD7gm
max“DSm
DY,
*MC10a,
*MD10b,
log *D10¢,
*MD10d,
log *"'D10¢,
log *D10f,
log *D10g,
max"Dll.
Yc12,
‘c13,
*Wci4,,
*c15,,

log N16a
log N16b
loglog N16c¢
Ni6ed

0.231 (0.493)
0.262 (0.498)
0.253 (0.533)
0.264 (0.519)
0.230 (0.485)
0.258 (0.493)
0.299 (0.513)
0.287 (0.514)
0.248 (0.495)
0.253 (0.498)
0.166 (0.489)
0.249 (0.492)
0.170 (0.489)
0.006 (0.506)
0.042 (0.499)
0.120 (0.485)
0.145 (0.485)
0.138 (0.475)
0.264 (0.497)
0.151 (0.478)
0.230 (0.485)
0.187 (0.494)
0.006 (0.506)
0.030 (0.501)
0.124 (0.490)
0.151 (0.490)
0.180 (0.483)
0.254 (0.503)
0.251 (0.501)
0.273 (0.502)
0.253 (0.499)
0.147 (0.513)
0.175 (0.513)
0.253 (0.514)
0.079 (0.522)

* k%

* % %

%k 3k %k

* k%

* % %

%k 3k %k

k%%

* k%

* % %

k%%

* k%

* % %
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n.s.

n.s.
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* k%
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k%%

* % %

n.s.

n.s.

* k%

* % %

%k 3k %k

* k%

* % %

%k 3k %k

k%%

* k%

* % %

% k%

* k%

0.795 (0.856)
0.776 (0.845)
0.726 (0.834)
0.733 (0.835)
0.756 (0.842)
0.774 (0.851)
0.800 (0.856)
0.792 (0.854)
0.787 (0.851)
0.786 (0.852)
0.760 (0.842)
0.783 (0.849)
0.770 (0.846)
0.718 (0.832)
0.739 (0.833)
0.758 (0.840)
0.766 (0.843)
0.778 (0.845)
0.793 (0.852)
0.777 (0.847)
0.778 (0.848)
0.767 (0.844)
0.717 (0.832)
0.730 (0.832)
0.746 (0.838)
0.755 (0.840)
0.777 (0.845)
0.763 (0.846)
0.782 (0.851)
0.775 (0.849)
0.787 (0.853)
0.718 (0.831)
0.722 (0.833)
0.786 (0.852)
0.714 (0.830)

15.9
49.8
87.0
83.3
59.5
31.9
14.7
20.5
29.1
27.0
61.0
35.9
49.5
923
86.7
65.8
57.9
49.8
24.4
42.6
37.8
55.8
92.4
91.3
73.6
67.2
48.4
44.8
28.6
34.8
223
93.7
88.5
28.9
97.8

%k %k ¥

* % %

% %k %

%k %k ¥

* % %

% %k %

%k ¥

%k %k ¥

* % %

%k ok

%k %k ¥

* % %
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k%

%k %k ¥

% %k %

%k %
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* % %

% %k %

%k ¥

* % %

* %

%k %k ¥

* % %

% %k %k

%k %k ¥

* % %

% %k %

%k ok

* %

%k ok

n.s.

0.151
0.111
0.019
0.033
0.071
0.115
0.176
0.175
0.152
0.158
0.066
0.133
0.086
0.004
0.020
0.054
0.069
0.074
0.161
0.096
0.122
0.084
0.004
0.014
0.046
0.061
0.096
0.123
0.152
0.146
0.163
0.006
0.013
0.151
0.001



log A173,
log Al17b,
log Al7c
log A17d,
Al7e,

log A17f
log Al17g,
log A17h,
log A17i
log A17j,
log A17k,
log A17|
log A17m,
log A17n,
log Al170,

0.009 (0.506)
0.002 (0.511)
0.036 (0.498)
0.186 (0.486)
0.151 (0.472)
0.004 (0.509)
0.028 (0.502)
0.146 (0.480)
0.231 (0.489)
0.031 (0.501)
0.128 (0.478)
0.185 (0.479)
0.130 (0.478)
0.164 (0.475)
0.165 (0.475)

n.s.

n.s.

n.s.

* k%

* % %

n.s.

n.s.

* k%

* % %

n.s.

* k%

* % %

% 3k %k

k% %k

* k%

0.716 (0.832)
0.715 (0.831)
0.732 (0.841)
0.774 (0.850)
0.780 (0.845)
0.716 (0.831)
0.729 (0.839)
0.777 (0.855)
0.809 (0.858)
0.730 (0.839)
0.772 (0.852)
0.807 (0.861)
0.773 (0.853)
0.801 (0.858)
0.802 (0.858)

92.0
95.8
67.7
33.6
49.7
93.8
73.2
215

7.2
71.6
29.2

0.0
271

9.7

8.1

* %

n.s.

% %k %

%k %k ¥

* % %

%k ok

%k %k ¥

* % %

%k ¥

%k %k ¥

* % %

% %k %k

%k ¥

%k %k ¥

0.004
0.002
0.026
0.096
0.076
0.003
0.023
0.101
0.140
0.025
0.096
0.134
0.100
0.126
0.128




Appendix 5 Model fits of non-spatial models (GLM) with the log;o-transformed number of vascular
plant species on 453 islands as response variable and different isolation metrics as explanatory
variables. The first model includes no isolation metrics, but only island area, temperature,
precipitation, elevational range and geology, and is included for comparison. All other models include
one isolation metric, either as a single predictor (r?) or in a multi-predictor model including also
island area, temperature, precipitation, elevational range and geology (R?). Except for A17i;and N16c
all single predictor relationships are negative. For multi-predictor models, AAIC was calculated as the
difference from the best model (AIC = 229.6). P-values in the multi-predictor models refer to
estimates of the respective isolation metric. See Fig. 1 and Table 1 for abbreviations. Significance:

%% (5 < 0.001).

single-predictor models multi-predictor models
Isolation metric r? P R  AAIC P R%pmvd
- - - 0.718 182.0 - -
Dla, 0.240  *** 0.787 57.2  **x 0.141
D2f, 0.264  *** 0.787 56.4  **x* 0.145
U3 0.231  *** 0.796  36.8  *** 0.167
D4, 0.262  *** 0.779 740  **x* 0.135
D5e 0.299  *** 0.801 256  *** 0.182
*D6ap, 0.248  *** 0.788  53.8  *** 0.137
*MD7b,, 0.249  *** 0.784 622  *** 0.133
max"D8, 0.138  *** 0.781 685  *** 0.078
DY, 0.264  *** 0.794 412  **x 0.150
MC10a, 0.151  *** 0.782  66.6  *** 0.083
max'D11, 0.180  *** 0.781 68.6  *** 0.094
“c12,, 0.254  *** 0.764 102.5  *** 0.114
‘c13,, 0.251  *** 0.784  63.3  *** 0.138
Wei4,, 0.273  *** 0.776  79.5  **x* 0.136
*¢C15,, 0.253  *** 0.789  52.8  **x* 0.142
loglog N16¢ 0.253  *** 0.789 52,9  *x*x 0.180
log N17i, 0.231  *** 0.812 0.0  *** 0.146




Appendix 6 Best multi-predictor models (SAR) including (a) one, (b) two, or (c) three isolation metrics
as explanatory variables in addition to area, temperature, precipitation, elevational range and
geology. The response variable is logjs-transformed vascular plant species richness on 453 globally
distributed islands. R? of individual variables shows their absolute contribution to the full model R?
calculated as R%,m.q. See Fig. 1 and Table 1 for metric abbreviations. Significance: *** (p < 0.001),

** (p < 0.01), * (p < 0.05).

Estimate SE z P R% (R%,) AIC
(a) Full model 0.807 (0.861) 121.8
(Intercept) -5.36 0.61 -8.81 ook
Log area 0.30 0.02 19.20 ***  0.439
Log elevation 0.09 0.03 3.06 *ok 0.023
Log temperature 2.81 0.33 8.52  ***  0.067
Log precipitation 0.45 0.06 8.11  *** (0.051
Geology 0.092
atoll - - - -
continental 0.42 0.08 5.57  x¥x
volcanic 0.33 0.07 493  Hx*
Isolation
log A17I, 2.06 0.20 10.52  ***  0.134
(b)  Full model 0.839 (0.871) 84.9
(Intercept) -5.25 0.58 -9.01  kx*
Log area 0.29 0.01 19.58  ***  0.419
Log elevation 0.08 0.03 3.04 *ok 0.025
Log temperature 2.90 0.32 9.16  ***  0.065
Log precipitation 0.43 0.05 8.11  *** 0.047
Geology 0.066
atoll - - - -
continental 0.34 0.07 456  ***
volcanic 0.26 0.06 414  *x*
Isolation
D5e, -1.07e”  1.69e® -637  ***  0.124
log A17I, 1.54 0.20 7.54  *** 0.095
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(c)

Full model
(Intercept)
Log area
Log elevation
Log temperature
Log precipitation
Geology
atoll
continental
volcanic
Isolation
max'D11,
D5eqy
log A17],

-5.29
0.29
0.08
2.94
0.43

0.33
0.28

-1.01e™
-9.59¢ %
1.42

0.56
0.01
0.03
0.30
0.05

0.07
0.06

4,15
1.71e™®
0.21

-9.49
19.52
3.12
9.72
8.20

4.53
4.46

-2.43
-5.60
6.79

* % %

* % %

* %

%k ok

%k ¥

* % %

% %k %k

k k¥

* % %

0.847 (0.872) 81.5

0.418
0.025
0.065
0.047
0.063

0.015
0.122
0.093
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Appendix 7 Best non-spatial multi-predictor models (GLM) including (a) one, (b) two, or (c) three
isolation metrics as explanatory variables in addition to area, temperature, precipitation, elevational
range and geology. The response variable is logio-transformed vascular plant species richness on 453
globally distributed islands. R? of individual variables shows their absolute contribution to the full
model R? calculated as R%*,mv. See Fig. 1 and Table 1 for explanation of metric abbreviations.

Significance: *** (p < 0.001), ** (p < 0.01), n.s. (not significant at p > 0.05).

Estimate SE z P RZ  AIC
(a) Full model 0.812 229.6

(Intercept) -6.19 0.40 -15.41  ***
Log area 0.29 0.02 17.40  *** 0.418
Log elevation 0.06 0.03 1.84 n.s. 0.009
Log temperature 3.19 0.22 14.66  *** 0.072
Log precipitation 0.52 0.04 11.57  *** 0.055
Geology 0.113

atoll - - - -

continental 0.56 0.06 9.04  **x

volcanic 0.48 0.06 8.25  ¥¥x*
Isolation

log A17j, 2.92 0.20 14,93  **x 0.146

(b) Full model 0.846  143.0

(Intercept) -5.74 0.37 -15.63  ¥**
Log area 0.28 0.02 18.35  *** 0.406
Log elevation 0.07 0.03 2.59 *ok 0.018
Log temperature 3.08 0.20 15.58  *** 0.067
Log precipitation 0.51 0.04 12.67  *** 0.053
Geology 0.072

atoll - - - -

continental 0.37 0.06 6.18  ***

volcanic 0.33 0.06 6.06  ***
Isolation

D5eq -1.17e  1.19¢® 9,79 **x 0.128

log A17j, 2.18 0.19 11.28  **x 0.102
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()

Full model
(Intercept)
Log area
Log elevation
Log temperature
Log precipitation
Geology
atoll
continental
volcanic
Isolation
*MC10a,
D5eq
log A17i,

-5.74
0.28
0.07
3.07
0.51

0.41
0.39

-1.71e™
-8.87¢%
2.02

0.36
0.02
0.03
0.19
0.04

0.06
0.06

3.44e™
1.29¢™®
0.19

-16.03
18.57
2.77
15.91
12.93

7.03
7.11

-4.97
-6.88
10.59

* % %

* % %

%k %k

* %k %k

* %k %

* %%

% %k x

%k ¥

%k %k ¥

* % %

0.854

0.405
0.018
0.067
0.053
0.080

0.020
0.110
0.100

120.4
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Moran's |

Appendix 8 Moran's | correlograms for vascular plant species richness on 453 globally distributed
islands. Graphs show spatial autocorrelation of (a) log;o-transformed species richness, (b) residuals
from non-spatial multi-predictor models (GLM) and (c) residuals from spatial multi-predictor models
(SAR) both including area, temperature, precipitation, elevational range, geology and isolation
measured as the proportion of surrounding landmass (A17l)), as explanatory variables for plant
species richness. Values of filled circles are significant at 5%-level. Significance of global Moran's |

values (Ig): *** (p < 0.001), * (p < 0.05).

1.0 . s
(a) (b) (c)
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Distance class (km) Distance class (km) Distance class (km)
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Appendix 9 Values for isolation metrics of 453 islands worldwide. Data comprise variations of
seventeen metrics that performed best in spatial multi-predictor regression analyses including area,
temperature, precipitation, elevational range and geology as co-predictors of vascular plant species
richness (Tab. 2) as well as eleven additional metric variations that might be of interest (D1b,, D2g,
*D6a, “MC7an,, *V'C10a, N16a, Al7a, Al7b, Al7c, Al17d, Al7e). Raw data (not log-transformed)
are provided as comma separated text file (Weigelt_Kreft_isolation.csv). The first line contains
column headers. Metric nomenclature follows Fig. 1 and Tab. 1. Metrics indicated by the letter D are
true distances measured in kilometres or weighted derivatives, other letters describe dimensionless
metrics. Island names (Name), I1ISO 3166-1 country codes (ISO), corresponding English country names
(Country), as well as latitude (LAT) and longitude (LON) of the mass centroids in decimal degrees are

given.
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