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Supplementary material

Text S1. Submodels of dynamic population model

In the following, the processes occurring in each time step of the 
dynamic population model are described. Respective parameter 
values are given in Table 1. 
Process 1: Climate state. At the beginning of each time step, the 
climate state, characterised by temperature and moisture, was up-
dated. Each cell’s temperature was calculated by climatological 
downscaling of mean summer temperature considering altitudinal 
differences, the adiabatic gradient Tlapse and radiation (Moore et al. 
1993, Wilson and Gallant 2000, Bellasio et al. 2005):
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with zij being the elevation of the grid cell, Sij the ratio between the 
insolation of the cell and the horizontal surface. The insolation 
was truncated to the cosine of the solar illumination angle i: 
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with the solar zenith angle θ0 = 78.25° and the solar azimuth φ = 
180°, A was the aspect and slope the surface slope (Dubayah and 
Loechel 1997). Potential soil moisture was approximated by the 
topographic wetness index (Beven and Kirkby 1979, O’Neill et al. 
1997), standardised for a precipitation rate of 500 mm/a: 
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where areaij was the drainage area above the cell. Flow directions 
were assigned using the D8 method, i.e. flow occurred in steepest 
down-slope direction to one of the cell’s eight neighbours, either 
adjacent or diagonal (Wilson and Gallant 2000). Thus, Wij could 
be interpreted as the proportion of rainwater each cell was able to 
retain. Actual soil moisture was then calculated by multiplying the 
proportion of retained water with actual rainfall.
Process 2: Habitat state. The butterfly depended on the pres-
ence and abundance of the plant which induced a carrying ca-
pacity K in each lattice cell. K was proportional to the plant foli-
age projective cover F, with the maximum carrying capacity Kmax. 
F was determined by temperature and moisture conditions of a 
cell, each representing a one-dimensional resource spectrum. The 
physiological response of the plant was described by a Gaussian 
utilisation function with the mean being the preferred position in 
the spectrum and a characteristic variance (May and Mac Arthur 
1972). Following Liebig’s law of the Minimum which says that 
growth is controlled by the scarcest resource, the limiting factor, 
F was calculated by multiplying the degree of utilisation of each 
resource. Resource competition at plant level was introduced by 
adding a second plant species, the competitor, whose fundamen-
tal niche overlapped with that of the host plant, and which did 

not serve as a host plant for the butterfly. The competitor always 
outcompeted the host plant resulting in a narrower, realised niche 
of the latter (Fig. 1). To simulate environmental stochasticity, the 
actual physiological response was drawn from a Normal distribu-
tion with mean F and a variance σ2

F. 
Global dispersal was assumed for host plant and competitor 

plant. Too abrupt changes in the plant distribution were avoided 
by incorporating a simple memory effect such that the actual ca-
pacity of the new time step was the arithmetic mean between the 
calculated capacity of time step t+1 and the old capacity of time t. 
This simple memory effect resulted in a time lag of several years.
Process 3: Dispersal. Early in each year, on emergence, a propor-
tion of adult butterflies and parasitoids left their natal patch to 
colonise other cells in the lattice. Local dispersal was assumed, i.e. 
the dispersers were concentrated around the area in which they 
developed as juveniles. The probability pij that an individual dis-
persed from cell i to j over the integer distance dij was described by 
a two-parameter Weibull distribution allowing different dispersal 
strategies (Söndgerath & Schröder 2002):
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with the shape parameter β, and the scale parameter α determin-
ing the dispersal distance. A high value of α indicated short-range 
dispersal, a low one large-range dispersal. At α=0 the dispers-
ers would be evenly distributed throughout the lattice (global 
dispersal). The integer distance dij between cells depended on 
the applied neighbourhood rule, in this case an 8-cell (Moore) 
neighbourhood (Hogeweg 1988). Individuals dispersing to un-
suitable habitats, i.e. cells without butterfly and plants respec-
tively, died. 
Process 4: Reproduction and parasitism. The generalised form 
of the difference-equation framework for the reproduction and 
parasitism phase was as follows:
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where N and P were the population abundances of the susceptible 
butterfly stage and the searching adult female parasitoid, respec-
tively, in generations t and t+1, λ the net finite rate of increase of 
the butterfly population, g(Nt) the density-dependent survival of 
the butterflies progeny, f(Pt) the proportion of butterflies escaping 
parasitism, c included the average number of adult female para-
sitoids emerging from each butterfly parasitised. The parasitoids’ 
functional response was linear (type I functional response) and the 
attacks were randomly distributed amongst the butterfly popula-
tion (Nicholson 1933, Nicholson and Bailey 1935). The fraction 
of butterflies escaping parasitism was given by the zero term of a 
Poisson distribution (eq. 6) with mean aPt where a was the area 
of discovery: 
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Density dependence of butterfly reproduction entered the 
model system via g(Nt) (eq. 7), a discrete version of the logistic 
equation (Ricker 1954, Hassell 2000):
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The intrinsic butterfly population growth rate λ was modelled 
temperature-dependent to reflect its metabolic dependence. To 
simulate the generally humped-shaped and left-skewed relation-
ship between physiological rates and temperature, a Gumbel 
distribution was used with Topt as location parameter, a scale pa-
rameter σ, and a maximum growth rate λmax. Butterfly population 
growth rate was additionally restrained by introducing a simple 
but strong Allee effect (Allee 1931). Below a critical population 
size Ncrit, the extinction threshold, no reproduction occurred and 
the local butterfly population went extinct.
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