
Table A3. The distribution of Sahara mustard over its native range recorded in the literature and 130 

GBIF database. 131 

Sources Described distribution of Sahara mustard 

Jalas 1996 Along the coastal area of Mediterranean Europe, including 

continental coast and islands of Spain, France, Italy, and Greece. 

Zohary 1966 and Zohary et al. 

1980 

In Egypt: Nile Delta, Nile Valley, western desert, oasis, northwest, 

northeast, Northern, Central and Southern Sinai. In Saudi Arabia: 

Hejaz, eastern Arabia, central Arabia. Bahrein. Kuwait. In Israel, 

Palestine and Jordan: Mediterranean Littorals, northern, western 

and central Negev Desert, Acco Plain, Sharon Plain, Philistean 

Plain, desert of Edom, Jordan Mts, East Jordan Desert, Southern 

Jordan Desert. In Syria and Lebanon: coastland, Lebanon Mts, 

Jebel Druze, Northern Mts. Northern, southern and eastern Cyprus. 

In Turkey: Western Anatolia, Mesopotamian Anatolia, Aegean 

Islands. In Iraq: mountain region, lower Mesopotamia, northern 

plains and foothills, western and southern desert. In Iran: northern, 

southwestern mts, and central, and southern Iran. 

Townsend and Guest 1980 In Iraq: occasional in the steppe region. Common in southern sector 

of the desert region. 

Miller and Cope 1996 Saudi Arabia, Southern Yemen, 

Oman, UAE, Qatar, Bahrain, Kuwait, 

S&W Europe, N Africa and SW Asia. 

On sand and gravel in deserts: 0 – 

2400 m 



Maire 1965 Coastal and interior dunes of North Afirca. Oasis in M’zab 

(Algeria) of northern Sahara. The High Plateau. Saharan Atlas 

Mountains range. Oasis in Ahaggar Mountains (Algeria). 

Rechinger 1968 Western and southern Europe, North Africa, western Syria, Iraq, 

Anatolia, Cyprus, Iran and Armenia. 

Jafri 1977 N. Africa, S. Europe, eastwards to Pakistan. Recorded collections 

in coastal Libya. 

Battandier and Trabut 1888-90 Coastal Algeria, High Plateau, Sahara. Mediterranean region. 

Global Biodiversity 

Information Facility 

(data.gbif.org) 

Records found in the following countries: 

Europe (Greece, Cyprus, France, Greece, Italy, Portugal, Spain, 

Turkey) 

Africa (Algeria, Burkina Faso, Egypt, Libya, Morocco, Tunisia) 

Asia (Iraq, Israel, Jordan, Kuwait, Lebanon, Oman, Pakistan, Qatar, 

Saudi Arabia, Syria, United Arab Emirates) 

 132 
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Appendix 4 153 

Using MaxEnt to model the distribution of range-expanding species 154 

The expansion of a non-native species means that its range does not reflect its stable 155 

relationship with the invaded environments (Elith et al. 2010a). This lack of equilibrium presents 156 

challenges for modeling potential distribution using data from current distribution. 157 

Solutions to this problem include using less complex models and comparing models based on 158 

different background samples (Elith et al. 2010a). 159 

We reduced the complexity of our models in three ways. First, we used only four climatic 160 

variables that are most biologically relevant to our focal species. Second, we used only the hinge 161 



and quadratic features in MaxEnt. Choosing the two features means that the modeled distribution 162 

is constrained by the mean and variance of the given climatic variables, may have piecewise 163 

linear response to any of them, but is not constrained by any interaction between them (Elith et 164 

al. 2010b). Third, we increased the regularization parameter in MaxEnt (from the default value 165 

of 1 to 2.5) to reduce the complexity of the surface of fitted models. Hence, our models excluded 166 

complicated detail response of species distribution to climate, which is more appropriate for 167 

species that have formed a stable relationship with its environment (Elith et al. 2010a). 168 

To further account for ongoing range expansion, we also allowed our models to provide 169 

Sahara mustard with more potential space for expansion. We did so by adding models based on a 170 

much larger background than those using our standard background. Our standard background 171 

was a polygon that consists of the majority of southwestern North America. The enlarged 172 

background was a rectangular region containing all lower 48 states of the U.S. and the entire 173 

territory of Mexico. By choosing the standard background, we asked why Sahara mustard was 174 

only found in certain areas of the Southwest given the spatial climatic variation within the region 175 

and whether it could further expand in the Southwest. By choosing the enlarged background, we 176 

asked why this species was only found in the Southwest given the climatic conditions across 177 

North America and whether it could expand beyond the Southwest. To provide approximately 178 

equal spatial density of sampling for our models, we drew 10,000 random samples from the 179 

standard background and 25,000, from the enlarged background.  180 

We found that models based on both backgrounds allow us to reach the same conclusion that 181 

1) Sahara mustard in North America is restricted by its climatic envelope (Fig. A3) and 2) the 182 



climate in the invaded range generally predicts the native distribution (Fig. A4). The model 183 

predictions also allow us to infer the climatic range under which Sahara mustard is likely to be 184 

present in both its invaded and native range (Fig. A5). 185 

 186 

Figure A3. Distribution of Sahara mustard within its climatic niche in North America predicted by SDMs. 187 
We used background samples from  (a) southwestern North America (SWNA) and (b) North America 188 
(NA) to build the models. For each background scenario, we trained two models: one using only 189 

(a) 

(b) 



herbarium records and the other, herbarium and invasive plant survey records combined. We then derived 190 
an ensemble from the two models. Each ensemble shows the area predicted by both models (peach) and 191 
by each model alone (green or yellow). The maps also show the occurrence of Sahara mustard recorded 192 
by herbarium collections (red circles) and invasive plant surveys (blue triangles).  193 
 194 

 195 
Figure A4. Projected distribution of Sahara mustard in its native continents projected by SDMs based 196 
on its invaded range in North America. We used background samples from  (a) southwestern North 197 
America (SWNA) and (b) North America (NA) to build the models. The building of the models was the 198 
same as described in Fig. A3. Shaded areas represent its native range estimated from the literature and the 199 
GBIF records. 200 
 201 

(a) 

(b) 



 202 

 203 

Figure 5A. Range of climatic variables in areas where Sahara mustard is predicted to be present 204 
in (a) North America and (b) its native continents by the SDMs. The four variables are mean 205 
temperature of the coldest quarter (TEMPCOLDQ), mean temperature of the warmest quarter 206 
(TEMPWARMQ), precipitation of the coldest quarter (RAINCOLDQ), and annual precipitation 207 
(RAINYEAR). Temperature values are shown as degree Celsius x 10 and precipitation values, 208 
millimeters. The SDMs use southwest North America as the background. 209 

TEMPCOLDQ TEMPWARMQ 

RAINCOLDQ RAINYEAR 

(a) 

(b) TEMPCOLDQ TEMPWARMQ 

RAINCOLDQ RAINYEAR 



 210 

Climatic variables used in the model and their contribution 211 

None of the four climatic variables used in the two background regions were overly 212 

correlated (if |R| > 0.85) with each other (Table A4); therefore we included all of them in each 213 

model.  214 

To understand which variable is most important in limiting the species’ distribution, we 215 

evaluated the contribution of each variable to a model using MaxEnt’s built-in evaluation 216 

algorithm (Table A5). Models based on SWNA background include summer temperature as the 217 

most influential variable, whereas models based on NA background include annual precipitation 218 

as the most influential variable. MaxEnt’s evaluation of each variable’s contribution to a model is 219 

sensitive to correlation between variables (though the model itself is not). In our models, summer 220 

temperature is correlated with winter temperature, and annual precipitation, with winter 221 

precipitation (Table A4). Therefore, the results can only allow us to suggest that temperature 222 

variation drives the species distribution within the Southwest, whereas precipitation is more 223 

important in limiting its range to the Southwest.  224 

Models based on the SWNA background predicted a smaller range than those based on the 225 

NA background (Fig. A3). Since temperature is a more influential variable in SWNA 226 

background models, this stronger climatic restriction suggests that Sahara mustard would have a 227 

broader range in the Southwest if temperature were not a limiting factor. Given that regional 228 

distributions are likely to shift following a changing global climate, Sahara mustard might be 229 

predicted to expand particularly in response to elevated temperatures.  230 



Table A4. Pearson coefficient of the four climatic variables used for building SDMs drawn from the 231 

two background regions: a polygon that consists of the majority of southwestern region in North America 232 

(SWNA) and a rectangular region containing all lower 48 states of the United States and the entire 233 

territory of Mexico (NA). 234 

 TEMPCOLDQ RAINCOLDQ RAINYEAR 

 SWNA NA SWNA NA SWNA NA 

TEMPCOLDQ       

RAINCOLDQ -0.1605 0.0523     

RAINYEAR -0.0470 0.2770 0.7382 0.7383   

TEMPWARMQ 0.7582 0.7257 -0.4071 -0.0943 -0.4198 0.1275 

 235 

Table A5. The estimated influence of climatic variables on each SDM. To determine the “percent 236 

contribution”, in each iteration of the training algorithm, the increase in regularized gain of the model is 237 

added to the contribution of the corresponding variable, or subtracted from it if the gain is negative. To 238 

determine the “permutation importance”, each variable was selected in turn, the values of that variable on 239 

training presence and background data are randomly permuted. The model is re-evaluated on the 240 

permuted data, and the resulting drop in training AUC (normalized to percentages) is shown.  241 

 242 

  Training Data 

  Herbarium records Herbarium and invasive plant survey 
records combined 

  Variable Percent 
contribution 

Permutation 
importance Variable Percent 

contribution 
Permutation 
importance 

B
ac

kg
ro

un
d 

SW
N

A
 TEMPWARMQ 42.2 33.4 TEMPWARMQ 51.6 42.1 

TEMPCOLDQ 30.6 10.7 RAINYEAR 18.8 33.7 
RAINCOLDQ 14.5 27.2 TEMPCOLDQ 17.6 6.3 



RAINYEAR 12.6 28.7 RAINCOLDQ 12 17.8 
 

N
A

 
RAINYEAR 41.9 71.8 RAINYEAR 61.1 67.7 

TEMPCOLDQ 30.7 14.5 TEMPCOLDQ 27.8 18.6 
TEMPWARMQ 19.1 4.1 RAINCOLDQ 6.5 6.4 
RAINCOLDQ 8.4 9.6 TEMPWARMQ 4.6 7.3 

 243 

 244 

Model validation 245 

We tested our SDM models using 10-fold cross validation and used the test score of the Area 246 

Under the receiver operating characteristic Curve (AUC) to judge whether each model performed 247 

reasonably well (Table A6). An AUC of 0.5 means the model prediction is no better than random, 248 

whereas a value closer to the maximum achievable AUC indicates better performance of a model. 249 

The maximum achievable AUC is 1-a/2, where a is the prevalence of the species over the 250 

sampled region (Phillips et al. 2006). This means that models trained by records of lower 251 

prevalence (e.g. fewer records or larger background) will have a higher maximum achievable 252 

AUC values. Therefore, models with higher AUC scores in the table are not necessarily better. 253 

Unfortunately, using presence-only data means that the prevalence of a species is unknown (no 254 

information on absence) and thus the maximum achievable AUC cannot be estimated. In our 255 

study, we used the test AUC to affirm that each model performed reasonably well (AUC>0.5) 256 

but did no judge how much the model deviates from its theoretical optimum. We note that 257 

MaxEnt has been repeatedly shown to produce some of the most robust SDMs using presence-258 

only data when compared with other modeling methods (Elith et al. 2006; Phillips et al. 2006). 259 

If a model passed the test, we trained the model used the entire dataset and accepted its 260 



logistic output as the relative probability of the species’ presence in a spatial unit. We used the 261 

logistic output threshold at which the model achieved maximum training sensitivity plus 262 

specificity (minimizing the error rate for both positive and negative observations (Freeman & 263 

Moisen 2008)) and treated any logistic value under this threshold as an indication of absence. 264 

 265 

Table A6. The AUC score of the MaxEnt species distribution model based on two different backgrounds 266 

(SWNA and NA) and using two different datasets: herbarium records only (H) and by combining 267 

herbarium and invasive plant survey records (H+IS). 268 

 269 

  Training Data 

  H H+IS 

B
ac

kg
ro

un
d SWNA 0.903+0.016 0.879+0.006 

NA 0.977+0.004 0.963+0.002 

 270 

References 271 

Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., et al. 2006. Novel methods 272 

improve prediction of species’ distributions from occurrence data. Ecography, 29, 129–151. 273 

Elith, J. et al. 2010a. The art of modelling range-­‐shifting species. - Methods in Ecology and Evolution 1: 330–274 

342. 275 



Elith, J. et al. 2010b. A statistical explanation of MaxEnt for ecologists. - Diversity and Distributions 17: 43–276 

57. 277 

Freeman, E. A. and Moisen, G. G. 2008. A comparison of the performance of threshold criteria for binary 278 

classification in terms of predicted prevalence and kappa. - Ecological Modelling 217: 48–58. 279 

Phillips, S.J., Anderson, R.P. & Schapire, R.E. 2006. Maximum entropy modeling of species geographic 280 

distributions. Ecological Modelling, 190, 231–259. 281 

  282 



 283 

Appendix 5.  284 

Examining the influence of decadal cold-season precipitation on the local expansion of 285 

Sahara mustard 286 

Introduction 287 

As a winter annual plant, Sahara mustard experiences population boom in response to high 288 

precipitation over the cold (late fall-winter-early spring) season. Moreover, precipitation in fall 289 

and early winter may favor its growth more strongly than late cold-season precipitation because 290 

early winter rainfall followed by later precipitation events provides a larger time window for the 291 

species to outperform native annual plants (Barrows et al. 2009; Marushia et al. 2010). Therefore, 292 

years of high (early) cold-season precipitation provide potential temporal niche opportunities for 293 

its expansion. To examine whether such niche opportunities exist, we assessed the relationship 294 

between the species’ local expansion and cold-season precipitation at the decadal scale. 295 

Methods 296 

We located local expansion hotspots using the same box-counting method (see Method in 297 

main text). We first evenly divided the southwestern North America into 100 km squares as our 298 

focal cells. We then divided each focal cell into 1, 5 and 10 km square cells and calculated the 299 

expansion rate within a focal cell (not adjusted for sampling effort) at those three local scales. 300 

We chose the maximum expansion rate among the three as the expansion rate in a focal cell and 301 

located cells that experienced high rates. We considered those focal cells as local expansion 302 

hotspots in that decade (Fig. A6). The calculation was done for each of the five decades (the 303 



1960s – the 2000s). 304 

We evaluated the decadal cold-season precipitation in those hotspots using weather data 305 

from the United States Historical Climatology Network. We acquired monthly precipitation data 306 

from weather stations that are located either within or adjacent to the hotspots (Table A7). We do 307 

not suggest that these stations faithfully represent the climate of each hotspot. Our interest is in 308 

revealing the general trend of winter precipitation between decades, which we believe is 309 

consistent over large spatial scales and therefore should be comparable between the hotspots and 310 

their correspondent weather stations.  For each station, we calculated the annual cold-season 311 

precipitation as the mean monthly precipitation from October to April. We calculated its long-312 

term mean averaged over year 1929-2010. We then calculated the abnormality of decadal cold-313 

season precipitation (cold-season Ad) as the percent deviation of the decadal mean from the long-314 

term mean. For instance, a cold-season Ad of 0.2 means the cold-season precipitation averaged 315 

over that decade is 20% higher than the long-term mean. We used Wilcox signed rank test to 316 

determine whether the cold-season Ad averaged over those hotspots in each decade was 317 

significantly above zero. 318 

We also located focal cells that were hotspots in one decade but experienced negligible 319 

expansion in the following decade. We considered those cells as local expansion coldspots for 320 

that following decade and calculated cold-season Ad in those cells. We compared the cold-season 321 

Ad averaged over hot- and coldspots of the same decade (Wilcox rank sum test) to examine 322 

whether the former received significantly more rainfall. We only compared hot- and coldspots in 323 

the 1970s – 1990s, the three decades in which similar number of hot- and coldspots were 324 



detected. 325 

Moreover, since high amount of rainfall early in the winter season may give Sahara mustard, 326 

a species characterized by rapid phenology, an advantageous start, we performed the same 327 

analyses using early cold-season Ad, namely the decadal abnormality of mean monthly 328 

precipitation from October to December. 329 

We repeated all the above analyses using precipitation data over the decade prior to any 330 

local expansion to indicate whether a local expansion was a delayed response to historical 331 

conditions. Finally we applied False Discovery Rate analysis (QVALUE in R package) to control 332 

the increased chance of listing a false positive test in this multiple-hypotheses test. 333 

Results 334 

Neither the cold-season nor the early cold-season Ad in local expansion hotspots were 335 

consistently positive across the five decades (Table A8). The cold-season Ad was significantly 336 

positive in the 1970s, 80s and 90s, but not so in the 1960s and significantly negative in the 2000s. 337 

The early cold-season Ad was significantly positive in the 1960s and 80s, but not so in the 1970s 338 

and 90s, and significantly negative in the 2000s. Comparing early cold-season Ad between hot- 339 

and coldspots, we found that those in hotspots were not significantly higher than in coldspots in 340 

any decade.  341 

Among the three decades (the 1960s, 70s and 2000s) in which Sahara mustard achieved the 342 

most rapid local expansion (Fig. 1 in main text; Fig. A6), only the 1960s had local expansion 343 

hotspots experiencing a substantial increase (+37.5%) in early cold-season precipitation but no 344 

increase in cold-season precipitation (Table A8). The hotspots in the 1970s experienced a modest 345 



increase (+5.9%) in cold-season precipitation, but the coldspots in the same decade received 346 

similar amount of rainfall. The 2000s saw the highest rate of local expansion and the largest 347 

number of hotspots. However, hotspots in this decade experienced a significant decline in cold-348 

season (-17.7%) and early cold-season precipitation (-19.1%). 349 

Neither did results suggest that the local expansion was a delayed response to previous 350 

decade’s high precipitation. Among the three decades (the 1970s, 90s and 2000s) in which either 351 

cold-season or early cold-season Ad was significantly positive in the previous decade, none had 352 

hotspots exceeding coldspots by their previous-decade cold-seaosn Ad (Table A8). 353 

 354 

Discussion 355 

Our results do not support the hypothesis that decadal variation in climate explains the 356 

decadal change in local expansion of Sahara mustard. Neither the rapid local expansion nor the 357 

difference between local expansion hotspots and coldspots can be consistently explained by 358 

higher cold-season precipitation averaged over each decade or the previous decade. 359 

The local population growth of Sahara mustard may respond to climatic fluctuation at a 360 

much shorter time scale. One or two years of heavy seasonal rainfall is sufficient to trig a local 361 

population boom of an annual species, strongly increasing the local occurrences recorded in a 362 

decade, but not raising the average precipitation over the same decade. For example, herbarium 363 

records of Sahara mustard in 2005 (78 records) make up more than a quarter of the 272 records 364 

in the 2000s as a result of an extremely wet winter and spring in the 2004-2005. However, the 365 

cold-season precipitation averaged over the 2000s is significantly below the long-term average. 366 



Population data of higher temporal resolution is needed to investigate whether the local 367 

expansion of this species tracks the climate at a much finer temporal scale. 368 

 369 
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Table A7. Locations of weather stations in the United States Historical Climatology Network 377 

that are either in or adjacent to local expansion hotspots and coldspots in each decade from 1960s 378 

to 2000s. The weather data from those weather stations were used to calculate the cold-season 379 

precipitation in each hot- or coldspot. 380 

 381 
Decade 1960s 1970s 1980s 1990s 2000s 

Locations of 
weather 
stations that 
are in or 
adjacent to 
local 
expansion 
hotspots 

Ajo, AZ Ajo, AZ Buckeye, AZ Chandler height, 
AZ Ajo, AZ 

Buckeye, AZ Buckeye, AZ Parker, AZ Miami, AZ Buckeye, AZ 
Chandler 
Heights, AZ Kingman, AZ Yuma, AZ Pearce Sunsites, 

AZ 
Chandler 
Heights, AZ 

Miami, AZ Prescott, AZ Tucson WFO, 
AZ Prescott, AZ Childs, AZ 

Parker, AZ Wickenburg, AZ Blythe, CA Roosevelt 1 
WNW, AZ 

FT Valley 
(Flagstaff), AZ 

Roosevelt 1 
WNW, AZ Yuma, AZ Chula Vista, CA Tombstone, AZ Grand Canyon 

NP, AZ 
Sacaton, AZ Blythe, CA Cuyamaca, CA Wickenburg, AZ Kingman, AZ 
Tucson WFO, 
AZ Indio, CA Pasadena, CA Blythe, CA Miami, AZ 

Brawley, CA Redlands, CA Redlands, CA Brawley, CA Parker, AZ 

Indio, CA Santa Barbara, 
CA  Indio, CA Prescott, AZ 

Redlands, CA Tustin Irvine 
RCH, CA  Needles, CA Roosevelt 1 

WNW, AZ 
 Boulder City, NV  Ojai, CA Sacaton, AZ 

 El Paso, TX  Santa Barbara, 
CA 

Safford 
Agricultural 
center, AZ 

   Jornada Exp 
Range, NM Tucson WFO, AZ 

   Orogrande, NM Wickenburg, AZ 
 

 
 NM State 

University (Las 
Cruces), NM 

Williams, AZ 

    Blythe, CA 
    Brawley, CA 
    Cuyamaca, CA 
    Indio, CA 
    Needles, CA 
    Newport Beach 

Harbar 
(Huntington 
Beach), CA 

    Ojai, CA 
    Pasadena, CA 
    Santa Barbara, 

CA 



    Tustin Irvine 
RCH, CA 

    Boulder City, NV 
    Kanab, UT 
    St George, UT 
    Zion NP, UT 

 
Locations of 
weather 
stations that 
are in or 
adjacent to 
local 
expansion 
coldspots 

 Buckeye, AZ Ajo, AZ Buckeye, AZ Pearce Sunsites, 
AZ 

 Chandler 
Heights, AZ Kingman, AZ Parker, AZ Tombstone, AZ 

 Miami, AZ Prescott, AZ Tucson WFO, 
AZ 

Jornada Exp 
Range, NM 

 Parker, AZ Wickenburg, 
AZ Yuma, AZ Orogrande, NM 

 Roosevelt 1 
WNW, AZ Yuma, AZ Chula Vista, CA 

NM State 
University (Las 
Cruces), NM 

 Tucson WFO, 
AZ Indio, CA Cuyamaca, CA  

 Brawley, CA Santa Barbara, 
CA Pasadena, CA  

 Indio, CA Boulder City, 
NV Redlands, CA  

  El Paso, TX   
 382 


