130  Table A3. The distribution of Sahara mustard over its native range recorded in the literature and

131 GBIF database.

Sources Described distribution of Sahara mustard

Jalas 1996 Along the coastal area of Mediterranean Europe, including

continental coast and islands of Spain, France, Italy, and Greece.

Zohary 1966 and Zohary et al. | In Egypt: Nile Delta, Nile Valley, western desert, oasis, northwest,
1980 northeast, Northern, Central and Southern Sinai. In Saudi Arabia:
Hejaz, eastern Arabia, central Arabia. Bahrein. Kuwait. In Israel,
Palestine and Jordan: Mediterranean Littorals, northern, western
and central Negev Desert, Acco Plain, Sharon Plain, Philistean
Plain, desert of Edom, Jordan Mts, East Jordan Desert, Southern
Jordan Desert. In Syria and Lebanon: coastland, Lebanon Mts,
Jebel Druze, Northern Mts. Northern, southern and eastern Cyprus.
In Turkey: Western Anatolia, Mesopotamian Anatolia, Aegean
Islands. In Iraq: mountain region, lower Mesopotamia, northern
plains and foothills, western and southern desert. In Iran: northern,

southwestern mts, and central, and southern Iran.

Townsend and Guest 1980 In Iraq: occasional in the steppe region. Common in southern sector

of the desert region.

Miller and Cope 1996 Saudi Arabia, Southern Yemen,
Oman, UAE, Qatar, Bahrain, Kuwait,
S&W Europe, N Africa and SW Asia.

On sand and gravel in deserts: 0 —

2400 m
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Maire 1965

Coastal and interior dunes of North Afirca. Oasis in M’zab
(Algeria) of northern Sahara. The High Plateau. Saharan Atlas

Mountains range. Oasis in Ahaggar Mountains (Algeria).

Rechinger 1968

Western and southern Europe, North Africa, western Syria, Iraq,

Anatolia, Cyprus, Iran and Armenia.

Jafri 1977

N. Africa, S. Europe, eastwards to Pakistan. Recorded collections

in coastal Libya.

Battandier and Trabut 1888-90

Coastal Algeria, High Plateau, Sahara. Mediterranean region.

Global Biodiversity

Information Facility

Records found in the following countries:

Europe (Greece, Cyprus, France, Greece, Italy, Portugal, Spain,

(data.gbif.org) Turkey)
Africa (Algeria, Burkina Faso, Egypt, Libya, Morocco, Tunisia)
Asia (Iraq, Israel, Jordan, Kuwait, Lebanon, Oman, Pakistan, Qatar,
Saudi Arabia, Syria, United Arab Emirates)
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Appendix 4
Using MaxEnt to model the distribution of range-expanding species

The expansion of a non-native species means that its range does not reflect its stable
relationship with the invaded environments (Elith et al. 2010a). This lack of equilibrium presents
challenges for modeling potential distribution using data from current distribution.
Solutions to this problem include using less complex models and comparing models based on
different background samples (Elith et al. 2010a).

We reduced the complexity of our models in three ways. First, we used only four climatic

variables that are most biologically relevant to our focal species. Second, we used only the hinge
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and quadratic features in MaxEnt. Choosing the two features means that the modeled distribution
is constrained by the mean and variance of the given climatic variables, may have piecewise
linear response to any of them, but is not constrained by any interaction between them (Elith et
al. 2010b). Third, we increased the regularization parameter in MaxEnt (from the default value
of 1 to 2.5) to reduce the complexity of the surface of fitted models. Hence, our models excluded
complicated detail response of species distribution to climate, which is more appropriate for
species that have formed a stable relationship with its environment (Elith et al. 2010a).

To further account for ongoing range expansion, we also allowed our models to provide
Sahara mustard with more potential space for expansion. We did so by adding models based on a
much larger background than those using our standard background. Our standard background
was a polygon that consists of the majority of southwestern North America. The enlarged
background was a rectangular region containing all lower 48 states of the U.S. and the entire
territory of Mexico. By choosing the standard background, we asked why Sahara mustard was
only found in certain areas of the Southwest given the spatial climatic variation within the region
and whether it could further expand in the Southwest. By choosing the enlarged background, we
asked why this species was only found in the Southwest given the climatic conditions across
North America and whether it could expand beyond the Southwest. To provide approximately
equal spatial density of sampling for our models, we drew 10,000 random samples from the
standard background and 25,000, from the enlarged background.

We found that models based on both backgrounds allow us to reach the same conclusion that

1) Sahara mustard in North America is restricted by its climatic envelope (Fig. A3) and 2) the
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climate in the invaded range generally predicts the native distribution (Fig. A4). The model
predictions also allow us to infer the climatic range under which Sahara mustard is likely to be

present in both its invaded and native range (Fig. AS).

(b)

*  Herbarium records

+ Invasive plant survey records

- No presence

- Predicted by herbarium records only
:I Predicted by herbarium and invasive plant survey records

- Overlap prediction

Figure A3. Distribution of Sahara mustard within its climatic niche in North America predicted by SDMs.
We used background samples from (a) southwestern North America (SWNA) and (b) North America
(NA) to build the models. For each background scenario, we trained two models: one using only
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herbarium records and the other, herbarium and invasive plant survey records combined. We then derived
an ensemble from the two models. Each ensemble shows the area predicted by both models (peach) and
by each model alone (green or yellow). The maps also show the occurrence of Sahara mustard recorded
by herbarium collections (red circles) and invasive plant surveys (blue triangles).

e

///// Recorded Native Range

- No presence

- Predicted by herbarium records only

I:I Predicted by herbarium and invasive plant survey records combined

- Overlap

Figure A4. Projected distribution of Sahara mustard in its native continents projected by SDMs based

on its invaded range in North America. We used background samples from (a) southwestern North
America (SWNA) and (b) North America (NA) to build the models. The building of the models was the
same as described in Fig. A3. Shaded areas represent its native range estimated from the literature and the
GBIF records.
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204  Figure SA. Range of climatic variables in areas where Sahara mustard is predicted to be present
205  in (a) North America and (b) its native continents by the SDMs. The four variables are mean
206  temperature of the coldest quarter (TEMPCOLDQ), mean temperature of the warmest quarter
207  (TEMPWARMAQ), precipitation of the coldest quarter (RAINCOLDQ), and annual precipitation
208  (RAINYEAR). Temperature values are shown as degree Celsius x 10 and precipitation values,
209  millimeters. The SDMs use southwest North America as the background.
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Climatic variables used in the model and their contribution

None of the four climatic variables used in the two background regions were overly
correlated (if |[R| > 0.85) with each other (Table A4); therefore we included all of them in each
model.

To understand which variable is most important in limiting the species’ distribution, we
evaluated the contribution of each variable to a model using MaxEnt’s built-in evaluation
algorithm (Table AS5). Models based on SWNA background include summer temperature as the
most influential variable, whereas models based on NA background include annual precipitation
as the most influential variable. MaxEnt’s evaluation of each variable’s contribution to a model is
sensitive to correlation between variables (though the model itself is not). In our models, summer
temperature is correlated with winter temperature, and annual precipitation, with winter
precipitation (Table A4). Therefore, the results can only allow us to suggest that temperature
variation drives the species distribution within the Southwest, whereas precipitation is more
important in limiting its range to the Southwest.

Models based on the SWNA background predicted a smaller range than those based on the
NA background (Fig. A3). Since temperature is a more influential variable in SWNA
background models, this stronger climatic restriction suggests that Sahara mustard would have a
broader range in the Southwest if temperature were not a limiting factor. Given that regional
distributions are likely to shift following a changing global climate, Sahara mustard might be

predicted to expand particularly in response to elevated temperatures.
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Table A4. Pearson coefficient of the four climatic variables used for building SDMs drawn from the

two background regions: a polygon that consists of the majority of southwestern region in North America

(SWNA) and a rectangular region containing all lower 48 states of the United States and the entire

territory of Mexico (NA).

TEMPCOLDQ RAINCOLDQ RAINYEAR
SWNA NA SWNA NA SWNA NA
TEMPCOLDQ
RAINCOLDQ -0.1605 0.0523
RAINYEAR -0.0470 0.2770 0.7382 0.7383
TEMPWARMQ 0.7582 0.7257 -0.4071 -0.0943 -0.4198 0.1275

Table AS. The estimated influence of climatic variables on each SDM. To determine the “percent

contribution”, in each iteration of the training algorithm, the increase in regularized gain of the model is

added to the contribution of the corresponding variable, or subtracted from it if the gain is negative. To

determine the “permutation importance”, each variable was selected in turn, the values of that variable on

training presence and background data are randomly permuted. The model is re-evaluated on the

permuted data, and the resulting drop in training AUC (normalized to percentages) is shown.

Training Data

Herbarium records Herbarium and invasive plant survey
records combined
. Percent Permutation . Percent Permutation
Variable PR . Variable PR .

contribution | importance contribution | importance

an TEMPWARMQ 42.2 334 TEMPWARMQ 51.6 42.1

e £ TEmpcolpg | 306 10.7 RAINYEAR 18.8 337

A | ¥ | RAINCOLDQ 14.5 27.2 TEMPCOLDQ 17.6 6.3
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| RAINYEAR | 126 | 287 |[RAINCOLDQ [ 12 [ 178
RAINYEAR 419 71.8 RAINYEAR 61.1 67.7
« | TEMPCOLDQ 30.7 14.5 TEMPCOLDQ 27.8 18.6
Z | TEMPWARMQ 19.1 4.1 RAINCOLDQ 6.5 6.4
RAINCOLDQ 8.4 9.6 TEMPWARMQ 4.6 73

Model validation

We tested our SDM models using 10-fold cross validation and used the test score of the Area
Under the receiver operating characteristic Curve (AUC) to judge whether each model performed
reasonably well (Table A6). An AUC of 0.5 means the model prediction is no better than random,
whereas a value closer to the maximum achievable AUC indicates better performance of a model.
The maximum achievable AUC is 1-a/2, where a is the prevalence of the species over the
sampled region (Phillips et al. 2006). This means that models trained by records of lower
prevalence (e.g. fewer records or larger background) will have a higher maximum achievable
AUC values. Therefore, models with higher AUC scores in the table are not necessarily better.
Unfortunately, using presence-only data means that the prevalence of a species is unknown (no
information on absence) and thus the maximum achievable AUC cannot be estimated. In our
study, we used the test AUC to affirm that each model performed reasonably well (AUC>0.5)
but did no judge how much the model deviates from its theoretical optimum. We note that
MaxEnt has been repeatedly shown to produce some of the most robust SDMs using presence-
only data when compared with other modeling methods (Elith et al. 2006; Phillips et al. 2006).

If a model passed the test, we trained the model used the entire dataset and accepted its
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logistic output as the relative probability of the species’ presence in a spatial unit. We used the
logistic output threshold at which the model achieved maximum training sensitivity plus
specificity (minimizing the error rate for both positive and negative observations (Freeman &

Moisen 2008)) and treated any logistic value under this threshold as an indication of absence.

Table A6. The AUC score of the MaxEnt species distribution model based on two different backgrounds
(SWNA and NA) and using two different datasets: herbarium records only (H) and by combining

herbarium and invasive plant survey records (H+IS).

Training Data
H H+IS
2 SWNA 0.903+0.016 0.879+0.006
3
S
—§ NA 0.977+0.004 0.963+0.002
m
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Appendix 5.
Examining the influence of decadal cold-season precipitation on the local expansion of
Sahara mustard
Introduction

As a winter annual plant, Sahara mustard experiences population boom in response to high
precipitation over the cold (late fall-winter-early spring) season. Moreover, precipitation in fall
and early winter may favor its growth more strongly than late cold-season precipitation because
early winter rainfall followed by later precipitation events provides a larger time window for the
species to outperform native annual plants (Barrows et al. 2009; Marushia et al. 2010). Therefore,
years of high (early) cold-season precipitation provide potential temporal niche opportunities for
its expansion. To examine whether such niche opportunities exist, we assessed the relationship
between the species’ local expansion and cold-season precipitation at the decadal scale.
Methods

We located local expansion hotspots using the same box-counting method (see Method in
main text). We first evenly divided the southwestern North America into 100 km squares as our
focal cells. We then divided each focal cell into 1, 5 and 10 km square cells and calculated the
expansion rate within a focal cell (not adjusted for sampling effort) at those three local scales.
We chose the maximum expansion rate among the three as the expansion rate in a focal cell and
located cells that experienced high rates. We considered those focal cells as local expansion

hotspots in that decade (Fig. A6). The calculation was done for each of the five decades (the
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1960s — the 2000s).

We evaluated the decadal cold-season precipitation in those hotspots using weather data
from the United States Historical Climatology Network. We acquired monthly precipitation data
from weather stations that are located either within or adjacent to the hotspots (Table A7). We do
not suggest that these stations faithfully represent the climate of each hotspot. Our interest is in
revealing the general trend of winter precipitation between decades, which we believe is
consistent over large spatial scales and therefore should be comparable between the hotspots and
their correspondent weather stations. For each station, we calculated the annual cold-season
precipitation as the mean monthly precipitation from October to April. We calculated its long-
term mean averaged over year 1929-2010. We then calculated the abnormality of decadal cold-
season precipitation (cold-season 4,) as the percent deviation of the decadal mean from the long-
term mean. For instance, a cold-season A, of 0.2 means the cold-season precipitation averaged
over that decade is 20% higher than the long-term mean. We used Wilcox signed rank test to
determine whether the cold-season 4, averaged over those hotspots in each decade was
significantly above zero.

We also located focal cells that were hotspots in one decade but experienced negligible
expansion in the following decade. We considered those cells as local expansion coldspots for
that following decade and calculated cold-season A, in those cells. We compared the cold-season
Ag averaged over hot- and coldspots of the same decade (Wilcox rank sum test) to examine
whether the former received significantly more rainfall. We only compared hot- and coldspots in

the 1970s — 1990s, the three decades in which similar number of hot- and coldspots were
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detected.

Moreover, since high amount of rainfall early in the winter season may give Sahara mustard,
a species characterized by rapid phenology, an advantageous start, we performed the same
analyses using early cold-season 4,4, namely the decadal abnormality of mean monthly
precipitation from October to December.

We repeated all the above analyses using precipitation data over the decade prior to any
local expansion to indicate whether a local expansion was a delayed response to historical
conditions. Finally we applied False Discovery Rate analysis (QVALUE in R package) to control
the increased chance of listing a false positive test in this multiple-hypotheses test.

Results

Neither the cold-season nor the early cold-season 4, in local expansion hotspots were
consistently positive across the five decades (Table A8). The cold-season 4, was significantly
positive in the 1970s, 80s and 90s, but not so in the 1960s and significantly negative in the 2000s.
The early cold-season 4, was significantly positive in the 1960s and 80s, but not so in the 1970s
and 90s, and significantly negative in the 2000s. Comparing early cold-season 4, between hot-
and coldspots, we found that those in hotspots were not significantly higher than in coldspots in
any decade.

Among the three decades (the 1960s, 70s and 2000s) in which Sahara mustard achieved the
most rapid local expansion (Fig. 1 in main text; Fig. A6), only the 1960s had local expansion
hotspots experiencing a substantial increase (+37.5%) in early cold-season precipitation but no

increase in cold-season precipitation (Table A8). The hotspots in the 1970s experienced a modest
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increase (+5.9%) in cold-season precipitation, but the coldspots in the same decade received
similar amount of rainfall. The 2000s saw the highest rate of local expansion and the largest
number of hotspots. However, hotspots in this decade experienced a significant decline in cold-
season (-17.7%) and early cold-season precipitation (-19.1%).

Neither did results suggest that the local expansion was a delayed response to previous
decade’s high precipitation. Among the three decades (the 1970s, 90s and 2000s) in which either
cold-season or early cold-season A, was significantly positive in the previous decade, none had

hotspots exceeding coldspots by their previous-decade cold-seaosn 4, (Table AS8).

Discussion

Our results do not support the hypothesis that decadal variation in climate explains the
decadal change in local expansion of Sahara mustard. Neither the rapid local expansion nor the
difference between local expansion hotspots and coldspots can be consistently explained by
higher cold-season precipitation averaged over each decade or the previous decade.

The local population growth of Sahara mustard may respond to climatic fluctuation at a
much shorter time scale. One or two years of heavy seasonal rainfall is sufficient to trig a local
population boom of an annual species, strongly increasing the local occurrences recorded in a
decade, but not raising the average precipitation over the same decade. For example, herbarium
records of Sahara mustard in 2005 (78 records) make up more than a quarter of the 272 records
in the 2000s as a result of an extremely wet winter and spring in the 2004-2005. However, the

cold-season precipitation averaged over the 2000s is significantly below the long-term average.
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Population data of higher temporal resolution is needed to investigate whether the local

expansion of this species tracks the climate at a much finer temporal scale.
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377  Table A7. Locations of weather stations in the United States Historical Climatology Network

378  that are either in or adjacent to local expansion hotspots and coldspots in each decade from 1960s

379 to 2000s. The weather data from those weather stations were used to calculate the cold-season
380  precipitation in each hot- or coldspot.
381
Decade 1960s 1970s 1980s 1990s 2000s
Ajo, AZ Ajo, AZ Buckeye, AZ il;‘“dler height, | xi0, AZ
Buckeye, AZ Buckeye, AZ Parker, AZ Miami, AZ Buckeye, AZ
Chandler . Pearce Sunsites, Chandler
Heights, AZ | <ingman, AZ Yuma, AZ AZ Heights, AZ
Miami, AZ Prescott, AZ 1uzcson WFO, Prescott, AZ Childs, AZ
. Roosevelt 1 FT Valley
Parker, AZ Wickenburg, AZ | Blythe, CA WNW, AZ (Flagstaff), AZ
Roosevelt 1 . Grand Canyon
WNW, AZ Yuma, AZ Chula Vista, CA | Tombstone, AZ NP, AZ
Sacaton, AZ Blythe, CA Cuyamaca, CA | Wickenburg, AZ | Kingman, AZ
?‘chon WFO, | 1hdio, cA Pasadena, CA | Blythe, CA Miami, AZ
Brawley, CA Redlands, CA Redlands, CA Brawley, CA Parker, AZ
Indio, CA (S;tha Barbara, Indio, CA Prescott, AZ
Locations of Tustin Irvine Roosevelt 1
weather Redlands, CA RCH, CA Needles, CA WNW, AZ
stations that Boulder City, NV Ojai, CA Sacaton, AZ
are in or Santa Barbara Safford
adjacent to El Paso, TX ’ Agricultural
CA
local center, AZ

expansion Jornada Ex
hotspots Range, NMp Tucson WFO, AZ
Orogrande, NM Wickenburg, AZ
NM State
University (Las Williams, AZ
Cruces), NM
Blythe, CA
Brawley, CA
Cuyamaca, CA
Indio, CA
Needles, CA
Newport Beach
Harbar
(Huntington
Beach), CA
Ojai, CA

Pasadena, CA
Santa Barbara,
CA




Tustin Irvine
RCH, CA
Boulder City, NV
Kanab, UT

St George, UT
Zion NP, UT

Locations of
weather
stations that
are in or
adjacent to
local
expansion
coldspots

Buckeye, AZ

Chandler
Heights, AZ

Miami, AZ
Parker, AZ

Roosevelt 1
WNW, AZ

Tucson WFO,
AZ

Brawley, CA

Indio, CA

Ajo, AZ
Kingman, AZ

Prescott, AZ

Wickenburg,
AZ

Yuma, AZ

Indio, CA

Santa Barbara,
CA

Boulder  City,
NV

El Paso, TX

Buckeye, AZ

Parker, AZ

Tucson WFO,
AZ

Yuma, AZ

Chula Vista, CA

Cuyamaca, CA
Pasadena, CA

Redlands, CA

Pearce Sunsites,
AZ

Tombstone, AZ

Jornada Exp
Range, NM

Orogrande, NM

NM State
University (Las
Cruces), NM
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