Large-scale movement behavior in a reintroduced predator population

17 July 2017

Buderman, Frances; Hooten, Mevin; Ivan, Jacob; Shenk, Tanya

Understanding movement behavior and identifying areas of landscape connectivity is critical for the conservation of many species. However, collecting fine-scale movement data can be prohibitively time consuming and costly, especially for rare or endangered species, whereas existing data sets may provide the best available information on animal movement. Contemporary movement models may not be an option for modeling existing data due to low temporal resolution and large or unusual error structures, but inference can still be obtained using a functional movement modeling approach. We use a functional movement model to perform a population-level analysis of telemetry data collected during the reintroduction of Canada lynx to Colorado. Little is known about southern lynx populations compared to those in Canada and Alaska, and inference is often limited to a few individuals due to their low densities. Our analysis of a population of Canada lynx fills significant gaps in the knowledge of Canada lynx behavior at the southern edge of its historical range. We analyzed functions of individual-level movement paths, such as speed, residence time, and tortuosity, and identified a region of connectivity that extended north from the San Juan Mountains, along the continental divide, and terminated in Wyoming at the northern edge of the Southern Rocky Mountains. Individuals were able to traverse large distances across non-boreal habitat, including exploratory movements to the Greater Yellowstone area and beyond. We found evidence for an effect of seasonality and breeding status on many of the movement quantities and documented a potential reintroduction effect. Our findings provide the first analysis of Canada lynx movement in Colorado and substantially augment the information available for conservation and management decisions. The functional movement framework can be extended to other species and demonstrates that information on movement behavior can be obtained using existing data sets.